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3. The Third-Order Expansion of the Planar Cold-Fluid Magnetron Equations,
by D.J. Kaup and Gary E. Thomas (Stud. Appl. Math. IL., 57-78 (1989)]

This Paper Presents the coefficients for a nonlinear theory of a
Planar magnetron. We are currently numerically evaluating these
coefficients to see how they correspond to the operating range 04 an
actual device.
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We can show that given one function, the entire problem becomes
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various stages of being accepted for publication.

1. Quantization of BiHaJmiltonian Systems, by Peter J. Olver and D.J. Kaup
[accepted by J. Math. Phys.]

This paper shows that even if one quantizes with different
Hamiltonians of a BiHamiltonain system, then the quantized versions
are essentially equivalent.

2. The Elliptic Sinh-Gordon Equation, by Marc Jaworsky and D.J. Kaup
[submitted to Inverse Problems]

This paper describes how to generate the fundamental singular
solutions of an integrable nonlinear elliptic PDE.

3. Coherent Structures in the Planar Magnetron, by D.J. Kaup Esubmitted to
Phys. of Fluids]

This paper describes how coherent structures can be generated simply
by ordinary linear processes. The major ingredients required are a
shear flow, resonances, and Poisson's equation.

4. A Thermal Instability in the Planar Magnetron, by S.N. Antani, D.J.
Kaup, and Gary E. Thomas (submitted to J. Plasma Physics]

This paper demonstrates a potential danger in large scale particle
simulations. Due to the necessity in numerical simulations to
approximate a large number o4 particles by one particle, it is then
possible to excite thermal instabilities. This is simply because the
numberical statistics will always be worst than in the actual
situation, since the number of particles are less. Thus the
nurberical calculations can have a much higher 8temperature', whichcould then cause a thermal instability to be excited in the numerical

calculations. And this thermal instability may never be excited in
the actual situation because of the much lower actual temperature.

5. Lattice Equations and Integrable Mappings, by V.G. Papageorglouv F.W.
Nijhoff, and H.U. Cape? (to appear in the Crete Proceedings]

This paper demonstrates that nonlinear integrable lattice equations
do have Lax pairs.

6. A Model Initial Value Problem in Stimulated Raman Scattering (SRS), by
D.J. Kaup and C. Menyuk (in preparation]

Curtis Menyuk devised a very simple model to test my statements that
soliton eigenvalues could move In SRS. The model is a remarkable
eye-opener. Not only do these soliton's eigenvalues move, but theygrow without limit! Thus one can mathenatically treat SRS as a rure
N-soliton solution, but with Nm infinity.
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Abstract

The direct and inverse scattering problem is solved for the elliptic Sinh-

Gordon equation. It is shown that the inverse scattering transform may

be useful in the analysis of localized singular solutions. As an example, a

cylindrically symmetric singular solution is discussed in detail.



1 Introduction

The elliptic Sinh-Gordon equation

uXX + uV= A2 sinhu (1)

appears in plasma physics [1-5] as a two dimensional model equation describ-

ing a system of interacting charged particles. Depending on the sign of A2

we can consider both positive and negative temperature states of thermal

equilibrium [4], corresponding to essentially different solutions of eq. (1).

Negative temperature states (A2 < 0) have been studied extensively [3-5),

and both numerical and analytical solutions have been reported, exhibiting

stable nonuniform distribution of the potential and charge density within a

bounded region.

On the other hand, little attention has been paid so far to the positive

temperature states (A2 > 0), perhaps because of the fact that the only pos-

sible regular solution (if it exists) is trivial, i.e. corresponds to the uniform

distribution of charge density.

The case A2 > 0 becomes nontrivial if we place a fixed charge (or a

number of charges) into the medium described by eq. (1), i.e. if we allow

the potential to be singular at some point(s) within the region of interest.

In this paper we confine our attention to this latter case, and without loss

of generality we put A2 = 1, by rescaling eq. (1) to the dimensionless form

UXX + uY = sinh u . (2)

A linearized version of eq. (2)

u" + u, - u = 0 (3)



can be easily solved using the Green function formalism [6]. Indeed, for a

unit point source at f and the boundary conditions u -- 0 as I- 00, the

Green function is given by

6G(F,F ')- Ko (j - F'j) , (4)

where Ko(r) denotes the modified Bessel function of the second kind and

order 0, F, F' are vectors with the components (x, y), (X', y', ), respectively.

Placing a point charge of strength A at the origin we find a cylindrically

symmetric solution

u(r) = AKo(r), r =1 F =  + Y2  , (5)

which satisfies eq. (3) everywhere, except for the singularity.

On the other hand, in the strong nonlinearity limit we can expect u -- oc

as r -4 0, and the solution of (2) tending to that of the Liouville equation

I
u,., - u., =-e (6)

The general solution of eq. (6) is given in terms of two arbitrary functions

[7]. Imposing cylindrical symmetry we can find a class of solutions singular

at the origin, with the leading terms given by

u= -alnr+/3+O(r) , (7)

where a c (0,2).

Unfortunately, in contrast to eqs. (3) and (6), a closed-form solution of

eq. (2) having cylindrical symmetry is not known. Naturally, one can use
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numerical methods to integrate (2), starting e.g. from the asymptotic expres-

sion (5). In this paper, however, we apply the inverse scattering transform

(IST) [8-11] in order to reconstruct the solution of (2) for arbitrary F?.

It should be noted here, that the elliptic problems are, in general, well-

posed when the boundary conditions are imposed along a closed curve sur-

rounding the region of interest [6]. On the other hand, the initial value

problem, which is a natural choice for the hyperbolic equation, may be un-

stable (ill-conditioned) when applied to the elliptic case. In this context, we

could expect possible difficulties in the application of the IST to an elliptic

problem. In fact, the IST has always before been used only for solving evo-

lution equations of the hyperbolic type, and to the authors knowledge it has

not been adapted to the elliptic case.

Therefore, the main aim of this paper is to study the applicability and

usefulness of the IST formalism to the analysis of elliptic problems. In this

connection, in Section 2 we consider the direct scattering problem in a rather

general case, without specifying details of the solution. In particular, the an-

alytic properties of the scattering data are determined by following closely

the methods of Refs. [9,11]. The y-dependence of the scattering data is

discussed in Section 3, while Section 4 deals with the inverse scattering prob-

lem. In Section 5 we consider a cylindrically symmetric solution of eq. (2),

having singularity at the origin and vanishing exponentially as r --+ oo. Sec-

tion 6 contains concluding remarks, and we shall also point out some open

problems.

2 Analytical Properties of the Scattering Data

Following [8,10], let us consider the linear eigenvalue problem

3



.( -coshu) v, sinhu)

V2,x= + nh +i - c u , (sb)

where p+ = (iu. + us) and C is the spectral parameter. Take the y-

dependence of the eigenfunctions v1 , v2 to be

vj (j cosh u ) I'P sinh uV2(av1,.,= + s-- vli v + vy (9a)

IV2, = (+ + sn u ,- + cos u . (9b)

Then it can be verified by cross-differentiation that (Sa,b) and (9a,b) are

compatible if: (i) u satisfies eq. (2) and (ii) C is independent of y.

For C real and u tending to zero sufficiently rapidly as x -- -o we define

the solutions of (8a,b) with the asymptotic form:

(x, ) 0 e[ as x - -oo, (10a)

O(x,e)-- . as x-+ oo, (10b)

where k(C) = -

It can be shown that if

v(x,()=- vi(z,C)1
IV2(X,)]

is a solution of (8a,b), then
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[ V2(X, _CI 1
(i, - )( -( )

is also a solution.

In particular, we have

e as x- oo (12a)

and

0() [ kz as x -+ +o. (12b)

Since 0 and are linearly independent, we can write for C real

¢(x,C) = a(()(x, C) + b(()O(x, ) , (13a)

(x, C) = b(C)4(x, C) - a(C)¢(x, C), (13b)

where

a(C)a(C) + b(C)b(C) = 1 . (14)

Consequently, it follows from (11) that

(ce) = a(-C) , (15a)

5(C) = b(-C) . (15b)

One can also show that
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( ,(16a)

and if u(x, -y) = u(x, y) then

a(y, ) *)--a(-y, C) , (17a)

b(y, C) -b(-y, ¢) (17b)

the last two relations being particularly useful when the solution of eq. (2)

is symmetric with respect to the y-axis.

In order to determine the analytical properties of the eigenfunctions €, ¢

we replace the differential equation (8) satisfying the boundary conditions

(10) by an equivalent integral equation [9,11]

-= 1+1 Nir(xz)¢t(z,)ei(zC)dz , (18a)

42 (X, C)e(xC) J A,(XzC)01(z,()exrddz ( 6b)

where

N(xz, () = q(z) r(t)e2i[0(-a(zC)]dt

N2 (, Z, C) = e

6



inh ( x) = (W + sinhu(x)'
r()() =+ ()

c(x,C) = k(()x - x sinh 2

Extending 0, (x, C) into the upper half plane (C = C + it7 , r> o) one can

show that for I C 1> 2

I €i(x,)e (zC= ) I< eI( ) cosh V+(x) , (19a)

and

I 0 2(XC)et o(z ' ) 1- eI(-) sinh V+(x) , (19b)

where

I(x)= j sinh 2 u dz

V+ ()={P+ (Z) I + sinh u(z)I dz

For I C j< we should consider an alternative form of the eigenvalue

problem [9]. Proceeding as before, we find for r > 0

~i (x,C)eikx 1< eJ(z) {Icosh cosh V- (x)+ - sinh 2 1 sinhV_(x)}

(20a)

I 02(X,()e' k I-1 el (X) I cosh u Isinh V-(x)+ I sinh u I cosh V_(x) , (20b)

7



where V_(x)= ff. {I p-(z) I +11 sinhu(z) I} dz and p- = } (iu, - u.).

Differentiating O(x, C)eikx with respect to C we can see that the deriva-

tive exists for 77 > 0. Thus, we can summarize the analytical properties of

eigenfunctions 0, 0 and scattering coefficients a, b:

Theorem - If the following integrals

fI' IuI d, l u IdXf I sinh u I dx

are bounded, then O(x, C)eikx, ;b(x, ()e - ikx and a(() are analytic in the upper

half plane (r > 0). For r 0 0, the above functions, as well as b(C) are at

least bounded.

For ( o in the upper half plane one can find that

OX eix= 0 +o ,(21 a)

= [1(X] + 0 (k, (21b)

and

a(()= I 0 -(21 c)

Similarly, for C - 0 in the upper half plane we have

*k [ cosh £1( ' = isinh +0(C) , (22a)
1 2

ibx,~ kz= --isinh~ +] (O(X' )e- = cosh ( , (22b)
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a(() = 1 + 0(C). (22c)

3 The y-dependence of the scattering data

Eqs. (9a,b) can be written in a matrix form as

V [ AB] v (23)

where

A(x,y,)= + cosh ( Y)

2 8C
B(x, Y, ) = i s in h u (x ' y ) _P TY)

C(XY, (sinh u(x, y) ++(X ) (4

Since u(x, y) --* 0 as I x 1-4 oc, we have

lim A(x,y,)= Ao()= +--
IZI-00 2 8

lim B(x,y,C)= lim C(x,y,C)=O . (25)
I 00-oo Ijl-oo

Eq.(23) is satisfied by the functions O(x,y,C)e'c Oy and 7(X,y,,)eAoe , thus

the corresponding equations for 4 and 7 can be written as

O A -A- Ao (26a)

9



and

S=[A+AO -A+A] (26b)

Taking the limit x -* +oo in (26a,b), we find the differential equations for

the scattering coefficients:

a,(y,C) = 0, (27a)

bv(y, () = 2Aob(y, C) , (27b)

u(y,C) = 0 , (27c)

bT(y,C) = -2Aob(y,C) (27d)

Thus

a(y,) = a(O,() , (2Sa)

b(y, () = b(O, C)e-2 Ao(()v , (2Sb)

(Y,0) -- o,) ,(28c)

(y, ) = E(O, )e2Ao(C)y (28d)

10



4 The Inverse Scattering Problem

Following [9] we assume (z, C) to be given by

tk(z,'C) = [ 0 ]3e' + LJ  [C(z, s) + M(x)L(x, s)] eikds (29)

where

cosh 1 i sinh 1
isinh2 -coshJ (30)

and XC, L are independent of C.
Substituting (29) into the eigenvalue problem (Sa,b) and taking the Fourier

transform we obtain the following differential equations for )C and L:

[Ia.-a 3C,+ia2p+(X)lC(X,s)+ 1a2sinh L(z,s) = 0 , (31a)
2 2

[I9 - a319 + ia2P_ (x)] L(x, s)+ I a2 sinh i (,s) = 0 , (31b)

subject to the boundary conditions:

lim K(x, s) = 0 , (32a)

lir L(z,s) = 0 (32b)

(XX)=P+( , (32c)



i(x,x) u 4 2 (32d)

were Ol, 0'2, a3, denote the standard Pauli matrices.

We can see that the solution for K and L exists and is unique (except at

the singularities of u(x)).

In order to derive the inverse scattering equations we consider the follow-

ing integral in the complex C plane (for C below C):

Ic d ( ' I(x, (')ei(')' (33)C (C - ()a((') '

where C denotes the contour extending from -oo + iO+ to 0-, then from 0+

to +Do + iO+, and passing over all zeros of a((').

For u on compact support the Jost functions as well as a(C), b(C) are

analytic everywhere (except for C = 0 and C = oo), and we can express

O(x, C') in terms of O(x, (') and $(z, (')
d('¢(x, (')eik(C')z d' -

c (C'- ()a ((') ( I - C

+ dC' p(C')k(x, I d)eik(C') , (34)

where p(C) = b(()/a(().

Using (21) and applying the Cauchy theorem we find

(z, C)e =z [ I ] + I ,-- p(C')(, eik(C') (35)

If u is not on compact support, the above contour integral can be replaced

by an integral along the real axis plus all contributions from the poles of p(C).

Note, that T(x, C) can be also expressed in terms of K and L, by using (11)

and (29). Thus, substituting (29) into (35) and taking the Fourier transform

12



we obtain the inverse scattering equations of the Gelfand-Levitan-Marchenko

(GLM) type for z > z:

i 2 C(XZ) F()( + z )+

ds [(x, s)F(°)(s + z) + £(x, s)F(')(s + z)] = 0 , (36a)

ia2(X, z) + [] F(')(x + z)+

ds [P(z, .s)F(1 )(s + z) + £(x, s)F( 2 )(S + z) =0 , (36b)

where

£(x,s) = M(x)L(x,s) , (37)

F(n)(z) = 1 d( ()p()eik(l)z (38)

Once KP and £ are found from (36a,b), the solution u and its y-derivative

u. can be recovered using (32c,d) and (37)

tan _ = iA(x,x)
tanh +£ 2 (x) ' (39a)

u , = 8P(X,) - iu. (39b)

5 An Example

According to the above, if the solution u vanishes as x -- ±oo, then we

can reconstruct it from the scattering data at any value of y where u and its

13



derivatives are nonsingular for all x. But how do we determine the scattering

data? And how do we determine its evolution across any value of y for which

u has a singularity? Before we can answer these key questions, let us first

study the simplest nontrivial example of a solution u which

(i) is cylindrically symmetric,

(ii) is singular at the origin,

(iii) vanishes sufficiently rapidly as r -- oo.

A closed form of the above solution is not known; however, for r --' 00

we can easily find that the solution approaches the linear limit (5):

u --+ AKo(r) , (40)

where Ko(r) denotes the modified Bessel function and A is a real constant.

If u, u., and u. are infinitesimal, then the scattering coefficients can be cal-

culated as standard (linear) Fourier transforms [9,11) of u and its derivatives.

In particular, from (18a,b) we find for u < 1

a(y,() -- 1 , (41a)

by - ] p+(x) ) e2ik(dx . (41b)

Expressing u and p+ in Cartesian coordinates for r -- oo we have

u(xy) = AK (x,+y2) (42a)

14



Xuz(x, y) = -A Ir-+= ~,(Ji 2 (42b)

U,,(~y)= -V-Xr -=Y , (V2 +y2)(42c)

The Fourier transforms of the above functions can be calculated by using the

method of Ref.[12]. For k real and y > 0 we find

1+00 = (vY2 ) (43)'d., 7r e-tvVl 2  4a

where V1 + (2k) 2 is assumed to be positive.

Substituting (42) into (41b) and using (43a,b) we obtain for y > 0, ( real

and positive (C > 0)

b(y, =Ale-Vi2)2 (44a)
2

while

0 (44b)

Since the scattering data are not analytic for y.-= 0 or for C = 0, we should

consider separately the case y > 0 and y < 0 as well as C > 0 and < 0.

For y > 0 and C on the negative real axis (C < 0) we have

b(y, C) = 0 , (45a)

15



=(y, -A (45b)

Similarly we can find for y < 0 and f > 0:

y, 0= 0 ,(46a)

T(y, ¢) = A evV')2 , (46b)

2

while for y < 0 and < 0

b~y,) =A~eZ ,(47a)

W(y,) = 0. (47b)

On the other hand, it follows from (28,c) and (41a) that

a = (y, ) = 1 (48)

for any y y 0.

Note, that the expressions (44)-(4S) for the scattering data are in agree-

ment with both (28) and (15a,b),(17a,b). Moreover, since we can make u as

small as we wish by letting y --+ :oo, we can conclude that the above results

are exact and valid for arbitrary y (except for y = 0).

Having determined the scattering data, we are in a position to consider

the inverse scattering problem. Since a(y, () = 1, there are no bound states,

and contour integral in (38) can be replaced by an integral along the real

axis:
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F( )(z) = J2 d ()pd)eik(), (49)

where p(f) = b(f)/a(f) and k(f) = L - -2 R '

Substituting (44a), (45a) and (48) into (49) and performing integration
we find for y > 0:

F(0)(z) = A (y +, K, (V(2)2+2)(5a
8 2/ (L2 Y+ y 2

F(1)(z) (-)Ko + y , (50b)

F (2 ) (Z) = y - i ( ()+ 2) (50c)
()) 

y-

For y -+ co, p( ) becomes infinitesimal and we find from GLM equations

(36a,b):

u5 KC 8i(x, x) -c! 8iF(')(2x) = A&0 ( x +y2 , (S

UY = Ski(x, x) - iu, - sF(0) (2x) - iu,

-- Ay ) - (51b)

On the other hand, for y -- 0 we note that the limit

lim F (n(z)

exists. Moreover, similar calculations performed for y < 0 show that

17



lir F(")(z) lim F(")(z) , (52)Vt- 0- Y.- O+

in spite of the fact that the scattering data are discontinuous for y = 0.

Thus, for y = 0, we have simply

F(0)(z) = CK, (2) , (53a)

F(')(z) = CKo(2) , (53b)

F(2)(z) = CK 2 (j ) (53c)

where C = -iA/S, and it remains only a technical problem of solving

the GLM equations (36a,b) with relatively simple expressions (53a,b,c) for
F(n) (Z).

6 Conclusions

In this paper we have discussed the direct and inverse problem associated

with the elliptic Sinh-Gordon equation. In particular, attention has been paid

to the simplest case of a cylindrically symmetric singular solution, for which

we have been able to derive exact analytical expressions for the scattering

data (44)-(48). The last step (i.e. solving the GLM equations) cannot be

done analytically, however due to simple (and exact) expressions for the

kernels F(W)(z) the problem is tractable by numerical means and allows us

to find effectively the potential u and its derivatives u,, u,.

18



Generally speaking, we have found the IST approach to be surprisingly

effective, in spite of a rather nonstandard application to the elliptic problem.

However, some questions remain open:

(i) Both numerical results and the WKB analysis [13] show that the am-

plitude A (see eq. (40)) is bounded by A,.., = 4/7r. For A > A,,,, the

solution seems to enter a new class which has point singularity surrounded

by a singular ring.

(ii) Generalization to the case of two (or many) charges is nontrivial. Pre-

liminary results indicate that the apparent asymptotic charge distribution

differs significantly from that of the single charge.

We will address the above problems in a future publication.
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Abstract

An analysis of the initial value problem for the planar magnetron reveals

that a coherent structure (convective cell) can be created from arbitrary

initial conditions and that these structures will grown linearly in time. This

is proposed as the explanation of the origin cf the convective cell formation

seen in recent numerical simul4



1 Introduction

Although there has been a very long history of the study of the eigenmodel

structure of a planar magnetron - s as well as also cylindrical magnetrons6 -8 ,

to our knowledge, no study has been made of the general initial value problem

for infinitestimal perturbations for these devices. We do find that the general

features of such a treatment for low density nonneutral plasmas has been

discussed 9- 11 and is well known. In the low density case, it is found that any

infinitestimal disturbance in the potential will tend to decay algebraically in

time9- 1'.

These results have been frequently quoted by others12 as sufficient rea-

son for ignoring the continuous spectrum also in the high density region of

these devices. While that may be true for the electrostatic potential, we shall

demonstrate here with a simple asymptotic expansion that such is not so for

the fluid motion. Indeed we find that a very important generic algebraic

instability always exists in these devices. And it can also occur at low densi-

ties, too, although reduced in magnitude by a factor of 2/f 2 . Furthermore,

this result will demonstrate that "coherent structures13 " can arise from the

plasma fluid equations. The generic features which allow them to exist in

this case are the shear flow and the wave-particle resonance.

The simplest example of a solution of a general initial value problem

for infinitestimal perturbations of a fluid flow problem has been given by

Case14'15 . As to details, we refer the reader to Refs. [9-11,14,15]. Here we

shall briefly outline the solution of the initial value problem for perturbation

of the planar magnetron (cylindrical case will be essentially the same except

for changes due to the cylindrical coordinates and curvature effects), detailing

only the important differences from the standard 9-1 1' 14.1 5 case.



2 The Initial Value Problem for
Infintestimal Perturbations of a Planar
Magnetron

We shall model the planar magnetron with the cold-fluid plasma equations

using smooth bore boundary conditions. First we shall outline the starting

equations and geometry, and then derive the equations relevant to the initial
value problem for infinitestinal perturbations.

The cold-fluid equations (with pressure 0) describing the nonrelativistic

flow of a non-neutral pure electron plasma are

tatn + W. () = 0, (1 a)

(at - 6. t )r+ E+ 6 x 5=o, (b)

e= -to, (1 c)

v ¢ = W.2 (ld)

Here, n, m, and v denote the electron number density, the electron mass,

and the velocity, respectively. The plasma frequency is w 2 = 47re 2/m. The

equilibrium we consider corresponds to the planar configuration of Fig. 1 with

crossed electric and magnetic fields. The cathode is at y = 0, and the anode

at y = 1. We define the normalized electric field &D = eo/m = -eEop/m

and the gyrofrequency f! = -e(Bo/mc)!.

In this paper we consider electrostatic modes where the magnetic field

remains equal to the equilibrium or zeroth-order value at all orders. Hence
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we will omit the subscript 0 on the fl even though this is a zeroth-order

quantity. We shall also do the same for the plasma frequency shortly. We

consider a two-dimensional diode structure, with translational invariance in

the z direction both in the equilibrium and for the perturbation quantities.

In addition, we assume translational invariance in the x direction for the

equilibrium quantities. From Poisson's equation, we have

i8, &D= 2 (2a)

where now w; = 47rnoe /m, and no is the equilibrium electron density. The

electron density no may be specified to be of any form and, hence, is arbitrary.

For no or w; a monotonic decreasing function of y, the linear diocotron mode

is stable for a cold massless low-density electron plasma) 6 This criterion has

recently been generalized to warm plasmas without assuming the guiding-

center approximation. 7 The equilibrium electron flow velocity is

VOv= IO -0 (2b)

Equations (2a) and (2b) imply that vo increases monotonically with y,

and thus we have a nonzero velocity shear in the equilibrium.

We next consider first-order perturbations of Eqs. (1). In general, all

physical quantities x may be written as

X = X0 + CXI + f2X2 + , (3a)

where e is a measure of the (small) deviation from the equilibrium value Xo.

Here, X may denote the density, electric field, or velocity. In first order, all

quantities are expanded as

3



X, = W1(Y t)eikx - c.c. (3b)

In this case, Eqs. (1) reduce to

Dfil + iknoi. + O(nofi,) = 0 (4a)

DO._-21/ - ikki = 0 (4b)

Di31 y + SID,. - as,4, = 0 (4c)

(8 - k2) 0- fi - 0 (4d)
(no)

where

D = 8t + ikvo (5)

A2 = 2 -_ W (6)

One can simplify the final equations by using Lagrangian displacements.

If we define

6x= D - (7a)

01y = Dfv (7b)

f, = -iknoe. - ay(nofy) (7c)

4



then (4a) is identically satisfied and the remaining three equations become

DD& - fDC&, - ikol = 0 (8a)

DDC& + IDC.- 12" _ at, 0 (8b)

(a - k 2 ) 1 + ikwp(. + a=(w, f,) = 0 (8c)

The smooth bore boundary conditions are

, 1(o,t) = 0 = ,v,t) (9)

which arises from the vanishing of the parallel electric field at the cathode

and the anode.

Given the value of &(y, t = 0), &(y, t = 0), vz=(y, t = 0), and v1(y, t = 0),
we wish to construct the solution of (8) for all t > 0. This is the initial value

problem we shall now solve.

If we define the Laplace transform of a variable as

=-, ) -- f e-"t.(y, t)dt (10)

by a capital symbol, then eqs (8) becomes

P - fP'- - ikO = F, (lla)

P2- + rP- x_ - -a = F, (11b)

(aY2 - k 2 )0Z + ikwp2=. + a, (wP2=11 ) = 0 (11c)

5



where 0 is the Laplace transform of ,

p = s + ikvo(y) (12)

and the inhomogeneous terms in (11) are

A 2
F, ( 0) + ib,,(t = 0) - -- fydt =0) (13a)

Fy = p y(t = 0) + 0y(t = 0) + n y(t = 0) (13b)

By eliminating Z from (11), one can reduce (11) to the two equations

Q -(V. F)A- (V x F). (14a)o(p--)-ik -1 -2!! - ,

AO,(A'E) + ik-- = A(V F) + Q (V x F). (14b)

where

A + Q(15)

(V. F)= ikF. + asFy (16a)

(V x F). = ikFv - t,__ (16b)

One can now solve the initial problem by solving (14) for -. (y, s, k) and

F(y,s,k) subject to the boundary conditions (9). Through (Ila), these

boundary conditions will relate '- and -, at y = 0 and at y = 1. This

solution is

6



(p 2" - ripE,- F,)j,=0,t = 0 (17)

Given the initial data, the solutions of (14), which are inhomogeneous equa-

tions, will be unique except possibly at certain discrete values of s, which

are the eigenvalues. At these eigenvalues of s, the function E: and "', satisfy

the homogeneous part of eqs (14). In actuality, the solution of the initial

value problem will give '- and Ey as having a simple pole in s (for all y) as

s approaches any one of these eigenvalues14 15.

But the solution of (14) also has other singularities in s. These are y

dependent singularities and occur at the singular points of the second-order

differential system (14). From (14), it is obvious that the points p = 0 and

A = 0 are ordinary singular points for the differential system (14). The

position of these singularities depend on s through (12) and (15). Since we

shall have need of them later, we shall give the form of the solution near

these s;ngularities.

Near p = 0, and as p -- 0, except for an overall multiplicative constant

(in y, but possibly dependent on s and k) the various Laplace transforms

will approach

i kW 4= 2 -.(18a)

fl~p
i kw 2

P - n+... (18b)

kw 2

VY fl P +(18d)

7



iA2 2

ikO ik f12 W; .. (18e)

[ ov -0 -(ow,2)ln + .. (18f)

IV - -ikno W)+... (18g)

where VZ(V ,N) is the Laplace transform of b1 .(R 2 , fi1 ).

Similarly near A - 0 , we have
I 2f2

- + --- (19a)
A

2pSI
-A + (19b)

A

A2

V, 2p,

A ~(1 9c)V +... (19d)

A

N-- -4ikn---- + (19d)
A

2

8



Now, every line in eqs (18) and (19) have also logarithmic terms in higher

order, but near the singularity, they only dominate in (18c) and (19e). Nev-

ertheless, their existance means that in addition to the pole singularities

discussed above, the solutions of (14) must also have branch cuts in the com-

plex s-plane. These cuts will be located at all values of s for which either p

or A will vanish for some value of y between the cathode and anode. From

(12) and (15), one can see that these branch cuts would lie along the imagi-

nary s-axis, and in general would have three sections as shown in Fig 2. The

quantity vf is the value of vo(y) at the anode. If kvf > S1, then the three

sections would merge into one branch cut.

Now that we have described the Laplace transform of the general solution,

let us next look at the asymptotic form of the general solution.

3 The Large t Limit of the Initial Value
Problem

We shall now obtain the large time asymptotic solution of the initial value

problem. Given the Laplace Transform, say ':'(y, s, k), then the original

function, &(y, t, k) is constructed from

&(y,t, k)= 00_ e"--'X(y,s,k)ds (20)

where the contour is to be taken to the right of all singularities in the complex

s-plane. The functions are all analytic for large s and also vanish as I s 1-+ oo.

Therefore we may close the contour to the left of the imaginary axis, and

shrink it down into individual contours around all branch points and other

singularities. These final contours are indicated in Fig 2.

There are three basic contributions to the solution of the initial value

9



problem: i) contours around the eigenvalues, ii) contours around the branch

cuts, and iii) inside each branch cut, for any fixed value of y, there will be a

regular singular point of the differential system (14). These latter singulari-

ties are tabulated in (18) and (19).

The contribution from the eigenvalues will be a (global) eigenmode with

a frequency of Im(sj) and a growth rate of Re(sj) where sj is the eigenvalue.

This contribution has been very well described in the literature1' - . The

contributions from the branch cuts (excluding all pole singularities inside

the cut) will always decay at least algebraically in time9 - 1'14", usually at

least as fast as t-'. Thus it is only a t"ransient part of the solution.

On the other hand, the pole singularities inside the branch cuts can give

a larger contribution. For example, (1Sa) has a pole or order 2 about p = 0.

Inrerting such a pole into (20) will give a growing contribution. Let a(s, y)

be analytic in s near p = 0. Then one may easily show that for large times

1 f a(s, y)' eds = te-ikvoca(-ikvo, y) +... (21)2,ri pl (s, y)

Similarly

1 f (Sy) e t ds = eikVta(_ikvo, y) +... (22)

-1J (s, y) e" (Inp) ds -- 0 (23)

From (21)-(23), one can easily read off the asymptotic values of the various

quantities in (18) and (19). For (18), near p = 0, we see that for large t

f,--+ ikCot Civo + - - (24a)

10



P2

-, ikCot.-e.,' + ... (24b)

i ,., V'l, ik , 8141 --+ 0 (24c)

h--- ikCo ( I 1no) e-ikot +... (24d)
no\ no I

where Co is the overall normalization constant, Co(s, k), for (18), evaluated

at p = 0. This constant is determined by the initial data, and in general is

nonzero.

As (24) shows, the solution is rather simple. For large t, the y displace-

ments approach a constant amplitude and are carried along with the back-

ground flow, v0 . (Note that when the e-ik' O term is combined with the

eikz term in (3b), then ej,, and fi will be functions of the combination

(X - vot)). Of course, any displacements in the y-direction shifts the particle

into a different background flow. Whence there is a lateral displacement of

the fluid particle away from its original position which grows linearly in time.

This lateral displacement is also directly proportional to the background ve-

locity difference between the initial and final layer. This gives , = t~yi4 ,vo

and is exactly the result found by (24a). At the same time, the density shifts

according to the vertical displacement of the particles. Such motion is well

known from the fluid dynamics of shear flows" s . Nothing more needs to be

said about it here except that it verifies that the treatment so far is correct.

Now consider the solution at the so-called "magnetron instability' 2 ,12,1 9",

which is where A = 0, or

p = -iII (25)

As before, we obtain

11



TI - IiC*-Sle :' ate -ikv°  (26a)

e-- C-9 e nOeikV t (26b)

01r C±A2eli t e - ik °tv (26c)

-4l "iCSjl 2e'iflte - ikvOt (26d)

ik& -- 0 (26e)

ay -' -C :f1W,2e: 'Ente-ikv°  ( 26f )

2 C±/" 2t 2±qifnt -ikvot
, e e (26g)

no

where C±(s, k) are the constants of proportionality for (19).

Now the motion is more complicated. However the interpretation is again

simple. Per (26) the fluid particles now undergo cyclotron motion with a ra-

dius of 1C.Q1. They are also carried along with the background flow. The

resulting fluid velocity is assymetrical2 1,21 (see also (7)). The electrostatic

potential and the parallel electric field both vanish, but the vertical electric

field does not vanish. Instead it approaches a constant amplitude propor-

tional to the density, and is exactly equal to y .As a consequence of this

vertical electric field, there is a constant flux of particles into this motion,

with the number of particles involved in the motion growing linearly in time.

12



Note that the electrostatic potential does vanish, but that the fluid veloc-

ities do not. As such, it is the fluid motion which is most significant for this

solution. The electrical potential has the least importance. It vanishes. The

vertical electrical field seems to arise as a result of only the cycling cyclotron

particles. When they move up vertically, the disturbed charge density cre-

ates a more intense vertical electric field at that point. And the resulting

imbalance in the vertical component of the force equation due to the shear

flow requires this vertical electric field.

Another way to look at this solution is to consider the effect of electrons

undergoing cyclotron motion in a shear flow. Even if they would be initially

in phase, due to the shear flow, different layers will go out of phase, creating

large vertical density gradients which generate the vertical electric field. And

this time oscillating electric field will then pull more particles into a cyclotron

motion. Note that the flow is compressible since t • 6 3 0.

This motion seems to describe the recent numerical simulations of a 2 vane

magnetron done by MRC22 . In Fig 3 we show a series from these simulations.

What one can observe is a slow growth of a circular structure which extends

over two vanes. This structure is actually composed of rotating particles and

is called a convective cel113 - 1. The number of particles involved in the motion

do seem to grow linear in time. Unfortunately, exact numerics and statistics

adequate for a good quantitative comparison are currently unavailable.

However simulation results on a 10 vane magnetron 26 indicated that con-

vective cell formation was less visible and certain. Although one could ob-

serve an occasional sporatic formation of vorticies which would seem to slowly

grow for some indefinite time, nevertheless they would eventually collide and

dissipate away. In any case, their formation was never observed as clearly

and as certain as was in the 2 vane simulations.

13



This is not inconsistant with these results, because in the 2 vane case, only

the fundamental k-vector and its harmonics could exist due to the periodicity.

Thus one had, in effect, only one value of k present. But in the 10 vane

simulations, sidebands of k (0.9k, 1.1k, etc) could simultaniously coexist

with the fundamental. One could approximate this situation with an almost

continous spectrum of k, where the general solution would be an integral

over k. As a consequence of this, there would be an additional dephasing

which would reduce the growth 14
,
1 5 predicted by (24) and (26). And this is

consistant with the simulations of the 10 vane magnetron.

4 The Direct Asymptotic Solution

If the solutions (24) and (26) are true, then one should be able to obtain

them directly from (8). Indeed one can. For the p --* 0 solution, simply take

the ansaltz

e° cc 1 0)(y k) (27a)

1 1tn+ 2
n-=O

-ikvt00 17() (y k)n E n tnI no(y) (27b)

= -ikvot cc v( 0) (y, k)(2)
VJ.T ~ i= = j n+1(2c

vIS" = eo)(y, )+2 (27d)
,i=O jn+

Then eq. (8) provides recursion relations which determines all the func-

tions ,(o), .,'o), vnO), and u$.) in terms of just one function. Choosing this

function to be ,o), we find

14



(0) =- _ 0 (28a)
(0) - _k2&.g() (2s,,)170 W2

v(o) = -ik! () (28b)

uiO ik..(o)

(0) (2c

i -W" 06 (29a)

r (0) ik-yoo°}.OW2 (29b)

= - la, (29c)

(0 )  - - (o)- A--W ,2 .o (29d)

and etc. Note the inverse powers of w2 in (29a,b,d). These terms indicate

that this asymptotic series will require a longer time for the higher order

terms to become smaller wherever the density is small. And the relative

sizes of these terms indicate the time required for a certain accuracy to be

achieved. Comparing (28a) and (24d) reveals that

o cao) = r o avno _ (30)
ik no

Since solving (11) can give one the value of Co, we see that the asymptotic

solution (27) can also be related to the initial data.

15



Now consider the magnetron instability where A --+ 0. The correct ansaltz

is

=~ ~ ~0 ,,,_ , *(y, k)(Sa
=e*Mt-k~t 7: (31a)n=O tn+2

n=O

=e~~rtesikvJtZE $(y k)(y) (31 b)

ix= e e)e - ( , t k (31c)
n=0

= lit te ikv°t uo (:1) (y, k)
= e e- E (- tn (31d)

n=O

Again, the lowest order solutions are

(70 - _ 
2 7 (32a)

(=) L% (32b)
= ik-j-(2

:o- k (32c)

-1 0 (33a)

=7 alW4 0 (p -) (33b)

-I ±W-2 )_- (33c)
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u = i-( "f (33d)

and etc. As before, convergence will be poorest in the low density regions.

Also from (32a) and (26g)

a2

= C (34)

Note that in (26), C* is the overall constant of proportionality for the

solution (19). Thus, C+ can be found from the initial data, and by (34), %(+)

can also be found from the initial data. Thus given the initial data, one can

in principle construct the time asymptotic solution by knowing simply three

function of y and k; namely ,o*)(y, k) and - (o)(y,k).

5 Summary

We have presented a generic algebraic instability in the planar magnetron.

It will always be present except for those rare initial data for which the

constants C+ vanish. It is furthermore independent of the density profile.

Thus even if a stable equilibrium density profile 27 existed, this algebraic

instability would cause the density profile to drift away from equilibrium.

This instability seems to have been important in the 2 vane magnetron

simulations. However, it seemed to be less dramatic when sidebands could

be present, as in the 10 vane simulations.
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Figure Captions

Fig. 1: Geometry and the shear flow in the planar magnetron.

Fig. 2: The complex s-plane, showing the branch cuts ( x - -- x) and the

location of possible eigenvalues (*) for the Laplace Transforms. At

each value of y, there is also a singularity inside each branch cut which

is located at -ikvo(y) below the top of the branch cut. Thus these

singularities move as a function of y. v1 is the value of vo(y = t). The

contour C is discussed in the text.

Fig. 3: The formation of a convective cell. (Courtesy of Mission Research

Corp.)
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is is not inconsistant with these results, because in the 2 vane case, only

Ldaznental k-vector and its harmonics could exist due to the periodicity.

me had, in effect, only one value of k present. But in the 10 vane 0
tions, sidebands of k (0.9k, 1.1k, etc) could simultaniously coexist p *
he fundamental. One could approximate this situation with an almost 41

ous spectrum of k, where the general solution would be an integral 0

As a consequence of this, there would be an additional dephasing 00o9
would reduce the growth 1 4'1 predicted by (24) and (26). And this is

tant with the simulations of the 10 vane magnetron.

The Direct Asymptotic Solution

solutions (24) and (26) are true, then one should be able to obtain

directly from (8). Indeed one can. For the p -- 0 solution, simply take

isaltz

= e - '~~'~ .'(°)(y, k) (27a)
n =0 n+2(2a

fi2 e i t °7)(yI k)no(y) (27b)
n=O

ti = e0i c v (')(y, k)
= e-' , -n)(' k)+1 (27c)

n=O

. = • i t ' ' ' oou(O)v~k)(27d)
vl t-+2 aIl

"hen eq. (8) provides recursion relations which determines all the func-
(0) ,,(0), V(o) and u(°) in terms of just one function. Choosing this

ion to be -y6), we find 0
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In 1975, one of the present authors i showed how to obtain the quantized levels of

the nonlinear Schr6dinger equation using the action-angle variables (canonical coordinates)

of the AKNS scattering data. The symplectic form used to effect the reduction to canonical

coordinates was based on the standard Hamiltonian structure for the nonlinear Schr6dinger

equation. The method used was a nonlinear generalization of one of the standard methods

for the second quantization of the electromagnetic field. As presented in the textbook by

Schiff2 , one takes the classical electromagnetic field and decomposes it into normal modes

(Fourier components). The key idea in this approach is that the classical electromagnetic

Hamiltonian will decompose into a sum of noninteracting classical Hamiltonians, each of

which has just two degrees of freedom and is easily quantized by itself. This method of

quantization bypasses all the inherent difficulties of fully quantizing the system, including

the factor-ordering problem, defining the quantum field operators for the fundamental

fields, etc. 3 It is fundamentally based on the symmetries of the classical system, and

reduces the problem to one of quantizing noninteracting particles 4. In this way, the original

difficult second quantization problem is reduced to a simpler set of noninteracting

problems. The advantage of this simpler solution is tremendous when one considers the.

information that one can glean from it. First, one can obtain the spacings of the energy

levels. One also discovers which quantum variables will commute, and which modes will

have a particle-like behavior. Of course, for a full quantum theory, one still has to deal

with a number of remaining difficult problems, including finding a consistent factor-

ordering for the quantum operators, evaluating matrix elements, etc. Unfortunately, the

solution to this larger quantization problem may well be multi-valued 3. However, in the

meantime, one has been able to immediately isolate the above-mentioned important features

of second quantization, and, very importantly, those quantities which would have the same

common solution for every possible consistent second quantization. Thus, any difficulty

which would be found at this level would also be present in any quantum field theory. And

a study by this method can provide valuable insight into the structure of the more thorny

parts of the second-quantization problem.

The symplectic form used in ref. 1 to effect the reduction to canonical coordinates
was based on the first Hamiltonian structure for the nonlinear Schr6dinger equation. In

1978, Magri5 showed how many soliton equations, including the nonlinear Schr6dinger

equation, could be written as biHamiltonian systems, meaning that they have two distinct,

but compatible, Hamiltonian structures. Indeed, his fundamental result showed that,

subject to some technical hypotheses 5'6 any biHamiltonian system is completely integrable
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in the sense that it has infinitely many conservation laws in involution and corresponding

commuting Hamiltonian flows.

From the viewpoint of quantum mechanics, the existence of more than one

Hamiltonian structure for a given classical mechanical system raises the possibility of there

existing more than one quantized version of this system, even at the level of quantization

considered in ref. 1. The resulting ambiguity in the quantization procedure raises serious

physical doubts as to the mathematical framework of quantization. However, the main

result to be proven here is that, for AKNS soliton equations 7, both quantized versions are

essentially the same. We demonstrate that, in terms of the respective canonical coordinates

on the scattering data, the two Hamiltonians have identical expressions, and hence identical

quantum versions. Indeed, we conjecture that this phenomenon is true in general -

quantization does not depend on the underlying Hamiltonian structure. (The results of

Dodonov et. al.8 , in which an ambiguity in the quantization procedure for certain finite-

dimensional biHamiltonian systems is supposedly demonstrated, are erroneous, since they

fail to incorporate the important topological properties of phase space properly in their

picture. Indeed, their ambiguity is just a version of the ambiguity inherent in the-

quantization of two-dimensional Hamiltonian systems, which we discuss in detail below.)

Moreover, we will see that for the other members of the associated hierarchy of soliton

equations the only difference in the quantum versions is in the choice of weighting factor

for the quantum operators corresponding to the continuous spectrum, the weight being

determined by the classical dispersion relation, and the replacement of the bound state

Hamiltonians. Thus, the effect of quantizing different members of the soliton hierarchy

will only be significant for the bound states/solitons.

Our presentation relies heavily on the notation and results in earlier papers by Kaup

and Newell1'9' 10 on the closure of the squared eigenfunctions for the AKNS scattering

problem. The key to our result is the well-known fact that the recursion operator, which is

built out of the two Hamiltonian operators for the system 5'6 is essentially the squared

eigenfunction operator. Since variations in the potential for the AKNS ,cattering problem

are expressed in terms of the squared eigenfunctions, this means that the second symplectic

form can be simply written down in explicit form; in terms of the scattering data, it differs

from the first symplectic form only by a weighting factor in the continuous spectrum, and a

change in the discrete components. However, the corresponding difference in weighting

factors for the two Hamiltonians exactly cancels out the weighting factor for the two

symplectic forms, while the discrete components reduce simply to the quantization of a two

3



dimensional Hamiltonian system, based on different symplectic structures. Thus, the entire

quantum ambiguity reduces to the simple matter of an ambiguity in the quantization of two

dimensional Hamiltonian systems, a problem that is easily handled.

Our notation is as follows. Hamilton's equations are

Qa = jap ap H, (1)

where Q = (Q") are the dynamical variables (the p's and the q's), J - [jr] is the
Hamiltonian operator, which determines the underlying Hamiltonian structure of the phase
space, and H is the Hamiltonian function or density. For instance, for a harmonic

oscillator, one would take

QqJand H =.(p +q2).

When Q is a function of a continuous variable, the sum over the dummy indices in (1) is
understood to include the appropriate integration, and the partial derivative is understood to
be a functional derivative instead. The Poisson bracket determined by such a Hamiltonian-

operator has the form

(F, G = (Da F) JOi'PaP G, (2)

which requires the symplectic two-form to be
1 -

2 dQa A J d Q  (3)

For the harmonic oscillator, this reduces to the familiar canonical form

D = dp A dq. (4)

Therefore, the operator J needs to be skew adjoint, and satisfy the additional condition
that the Poisson bracket (2) satisfy the Jacobi identity, which is equivalent to the
requirement that the two form Q) be closed6.

Before presenting the main results, we discuss a simple but crucial fact that any two
dimensional Hamiltonian system has a unique quantized version, even though it has many
different Hamiltonian structures. In terms of the standard Hamiltonian structure prescribed
by the canonical two-form (4), Hamilton's equations take the classical form 1
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-H aH
p qt = (5)

In R2, any nonzero two-form X(p,q) dp A dq is always closed, and hence determines a

Hamiltonian operator

0

It is easy to see that (5) can be written in Hamiltonian form using this second Hamiltonian

structure if and only if X is a function of the Hamiltonian H. In this case, the new

Hamiltonian function is

H2 (p,q) = 4)[ H(p,q)],

where 4)(t) is any nonvanishing scalar function, and

n2 = 4) '[ H(p,q) ] dp A dq (6) "

is the second symplectic form. Re-expressing !Q2 in canonical form will lead to new

canonical variables F, 4, and an ostensibly different quantized version. However,

provided this transformation does not affect the phase space topology, it is not hard to see

that these two quantized versions will end up being identical, at least in the semi-classical

limit, and so there is no ambiguity in the (semi-classical) quantization of two-dimensional

Hamiltonian systems.

We now turn to our problem at hand. For simplicity, we will consider the general

nonlinear Schr5dinger equation

iqt = -qxx+2rq, (7a)

ir t = rxx+2qr 2 , (7b)

in detail. However, our arguments will work equally well for any other soliton equation

associated with the AKNS spectral problem7 ; see the remarks at the end of the paper. For

r = ± q*, (7) reduces to the single equation

iqt = -qxx ± 2 (q" q) q, (8)
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which is the form of the nonlinear Schr6dinger equation in which all physical constants,

e.g. h, m, etc., have been set equal to 1. According to Magri 5 the nonlinear Schr6dinger

equation can be written as a biHamiltonian system

Vt = J1 all = J2 DH2 " (9)

The first Hamiltonian can be identified with the (signed) energy

H, = ±E = f, (q.r.+q2 r2 )dx, (10)

while the second Hamiltonian is the field momentum

H2 = P = i r (rq,-qr,)dx.

The two Hamiltonian operators are given by

ji = 2 -0(12)

1 /qfqP q -qX.o ' "r

2 aixr . r J, C1= (0 (13)

(In our notation6 we have omitted the delta functions used by some authors.) Moreover,

these Hamiltonian structures are compatible, in the sense that any linear combination

ClJ1 + c2J2 is also Hamiltonian. Therefore, according to the theorem of Magri the operator

R = J2 "- J1' (14)

is a recursion operator for the general nonlinear Schrbdinger equation, leading to an infinite

hierarchy of mutually commuting biHamiltonian flows.

To determine the two quantized versions of the nonlinear Schr6dinger equation, we

need to introduce canonical coordinates and momenta, which will be found among the

scattering data for the associated eigenvalue problem. We begin by recalling how this was

done in ref. I for the first symplectic form. The general nonlinear Schr~idinger equation can

be solved using the AKNS eigenvalue problem 7

vl.x+i v, = qv 2, v2,x-iv 2 = rv1 . (15)
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We let V=(I. be the solution to (15) satisfying the boundary conditions
(, V2

e~ic X _ _00 .7 x -4 ,

for Im > O. Similarly, let be the solution to (15) satisfying the boundary

conditions

S(!() eix )

for Im < 0. This serves to define the scattering coefficients a, b, a, b, which also

satisfy

A( ) a(O + ( ) b(C) = 1. (16)

The ratio p(t) = b(4)/a( ), real, serves to define the continuous spectrum of the
scattering data for (4). The zeros of a(C) in the upper half plane correspond to the bound

states, and are denoted as j = j + i T)j, j = 1,...,N. Finally let bj denote the value of b

at Cj, and let pj denote the residue of p at the pole j. Similar quantities are defined for
the eigenvalues Zj.

In ref. I it was shown how to express the first symplectic two-form in terms of the
scattering data in the case r = q*. Tracing through the calculation there in the more
general case, we find that

fl =if_" (qABr)dx

= i 8 log b(4) A 8 log(() a(4) }d + (17)

N

-2 : { 8 jA8logbj + 8 A8logb 3 ),
j=

7



where the last sum is absent if r = + q*, since there are no bound states. When r = ± q,

then 1(4) = a(t)*, and (t) = b(4)*. In this case one can choose canonically conjugate

variables by letting

Aj = 4 Tj, pj = -4 , p(4) = - -log I a( )I,

represent the momenta (p's), and

Bj = arg bj, qj = log I b j I, q(k) = arg b(k).

the conjugate coordinates (q's) for the system. The first Hamiltonian functional is then

expressed as

8iNH = E = - 2 log(I a(() I) d - 18)

j=1

From this expression, the quantized form follows directly as in ref. 1.

For the second symplectic form, we first recognize that by (12), (13) and ref. 7,

J2 = L A J 1 
= LA C2 , (19)

where LA is the recursion operator for the squared eigenfunctions. Recall that the squared

eigenfunctions corresponding to (15) are the functions

(V(x)2
(v 2(C,x) 2

We define the corresponding quantities Ili for the bound states %j similarly. The key

result l0 is that the recursion operator LA, given in (19), has the squared eigenfunctions as

eigenstates:

LAI %y = , LA yj  I j. (20)

Thus we can compute the second symplectic form

I2=1 <SAIA0LA)-I V>
f2 < = 8vAI~o2 (L 1l8V>.

Now, according to (B3) of ref. 10,

8



8V .1 f 8 p(4) q'(4) - 8p(4) Ti(4) ) d -

N

-2i I ( Spj yj + pj 8; Xj + 8pj q~j + j S j j •

j=l

Therefore, using (20),

(LA)- 8V = f F { SP(4) (LA)-I - p( ) (LA)-I T ( 4) d4 -

N
-2i (8pj (LA)-I  + p S; (LA)-I X+5p (LA)-I T + P S (LA)-I

j=1

- I~(S~w() &(P() Jdt

-2i I + 8 j Xj + 8 Tj +  zXj,

where we have moved the integral over the continuous spectrum off the real axis to avoid

the singularity at C = 0. Therefore the only difference between the computation of 0, and

the new symplectic fnrn Q2 are the weighting factors 1/ in the continuous spectrum,

and l/Ci in the discrete spectrum. A similar calculation as was used to produce (17) now

gives

U2= 8 log( )( ))A6argb()} d4 +

M(0) b(O)+ E(0)b(0)8log a(---A8 log 0  (21)

N

- 2 5 { 8log~j^6Iogbj+8logZjASlogb J,
j=

where the two complex integrals have combined to give the principal value in the leading

term, and extra discrete term comes from the associated residues at the pole = 0. When

r = : q, canonically conjugate variables are provided by the momenta

9



Aj = 4 arg j, = -4 log I, ( - - log Ia(k)I,

and the conjugate coordinates

1j = arg bj, 4= logIbjI, 4(t) = argb(t),

provided 4 *0. In addition, the point 4 =0 appears separately as the extra residue term
in the expression for Q2, so this particular mode survives the principal value cancellation
in a new discrete form. However, there is no simple formula for the relevant canonical
variables there. Also, in the case r = ± q*, this term vanishes because 1(0) = a(O), and
so this extra complication does not arise. All the other modes for the continuous spectrum
are related according to the simple reweighting

p(4) = 4tP(t). (22)

For the second Hamiltonian structure, the Hamiltonian functional giving the
nonlinear Schr6dinger equation is the momentum (11). According to the calculations in
ref. 1, it can be expressed in terms of the scattering data as

N
H2 = P = ifJ. k log I a(k) I dk - 4i (23)

t ~j=1

Comparing with (18), we see that, in terms of the respective canonical variables, the
continuous spectrum contribution is exactly the same weighted sum of the continuous
canonical momentum variable associated with the respective symplectic two forms:

HI: - k2p( )dx versus H2 : i f=p( ) jdx" dx.

Therefore, the continuous modes have identical quantizations. (The singular point = 0
plays no role as both Hamiltonians make no contribution to this mode.) As for the bound
states, we are reduced to the case of a collection of integrable two-dimensional Hamiltonian
systems with different Hamiltonian structures. For the original symplectic form f12, the
Hamiltonian system corresponding to the discrete eigenvalue j has the form

(logbj)=- aHI = 4iC, (t = 0,
at alogbj 0

10



and similarly for the eigenvalues Zi. (We are just reproducing the classical calculation of
the evolution of the discrete scattering data for soliton equations.) For the second
symplectic form fC2, the Hamiltonian system corresponding to the discrete eigenvalue %
now takes the form

(log bj)= 4 i (log t =0
2 a log jJ 2 alog bj

and similarly for the eigenvalues Zj. Thus, these two dimensional Hamiltonian systems
are identical, even though they use two different Hamiltonian structures:

- 2 8 j A 8 log bj versus - 2 8 log j A 8 log bj.

However, as we remarked above, we take as fundamental the fact that a two-dimensional
Hamiltonian system has a unique quantization, even though it has many different
Hamiltonian structures. Therefore the bound states for the nonlinear Schrbdinger equation

also have identical quantizations. We conclude that both Hamiltonians lead to the same
quantized version of the nonlinear Schrbdinger equation. -

As a final remark, we recall that the other soliton equations appearing in the AKNS

scheme can be written in the form

(q) = DA) (q)

where f ( ) determines the linear dispersion relation 7. These can all be written in
biHamiltonian form using the same two Hamiltonian structures as above. An identical
calculation, which we omit for the sake of brevity, will show that the two quantized
versions of any member of these AKNS hierarchies will lead to the same quantum version.
Moreover, it is not hard to see that the only difference between the quantized versions of
two different members of the same soliton hierarchy is in the weighting factor Q(,) for the
modes corresponding to the continuous spectrum (with appropriate discrete contributions at
the points where fl( ) = 0) and replacement of the discrete Hamiltonians by 2(%j) and
f () respectively. Thus the only distinction between the various quantized versions of a
soliton hierarchy is in the weighting assigned to the continuous modes, and the replacement
of the Hamiltonian governing the evolution of the bound states. Finally, we note that the
same considerations will apply to other soliton equations, such as the Korteweg-deVries
equation, as the key fact that the recursion operator is the squared eigenfunction operator
remains valid.
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Time Evolution of the Scattering Data
for the Forced Toda Lattice

By D. Wycoff and D. J. Kaup

Determination of the time evolution of the scattering data for an inverse
scattering transform solution of the forced Toda lattice appears to require an
overspecification of the boundary condition at the end of the lattice. This appears
in the form of an apparent need to specify the values of two functions at the
boundary rather than one. We present three different approaches to the resolu-
tion of this problem. One approach gives the Maclaurin series (in time) for the
scattering data. The second approach gives the scattering data in terms of the
solution to a nonlinear, nonlocal partial differential equation. The third approach
gives the scattering data in terms of the solution to a linear integral equation. All
three approaches reduce to one the number of functions which must be specified
to determine a solution. The advantages and limitations of each approach are
discussed.

1. Introduction

The inverse scattering transform (IST) [1] has proven to be a very powerful
method, allowing us to fully solve the initial value problem for large classes of
nonlinear partial differential equations and systems of ordinary differential
equations. However, except for certain special cases [2-5], it has not been
possible to solve initial-boundary value problems for these same integrable
equations. The basic reason for this problem in treating the initial-BVP is easy to'
understand: the equations which determine the time evolution of the scattering
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8 D. Wycoff and D. J. Kaup

data involve terms which appear to require an overdetermination of the problem
(6, 71.

The difficulties which arise are generic [6, 7], but let us consider a specific case,
the forced Toda lattice [8-15] (FTL). By the FTL we mean a semiinfinite Toda
lattice [16] in which the leftmost particle is externally forced to move in a
specified way, Qo(t). No particular problems arise in setting up the IST for this
problem [12, 17, 181. Unfortunately, however, the differential equation which
determines the time evolution of the scattering data for this IST 112] involves as a
potential the motion, Q1(t), of the second particle in the lattice, which is not
known until after the equations of motion have been solved. Although this
situation is unpleasant, it is not surprising. In fact, if we solve the linear
approximation to the FTL by Fourier transforms we find that the same thing
occurs: the time evolution of the Fourier coefficients depends not only on Qo(t),
which is given, but also on Q1(t). In the linear case this apparent need to
overspecify the boundary condition is easily resolved, and Q1(t) can be found in
terms of Qo(t). Since it has proven fruitful in the past to think of the IST as a
form of Fourier analysis for nonlinear systems [1], it is worth considering whether
this problem can be overcome in the nonlinear case as well.

Previous work on the forced Toda lattice has suggested that a careful consider-
ation of the analytic properties of the scattering data might serve to resolve this
apparent need to overspecify the boundary conditions [12, 14, 15). However,
these earlier results were useful only for very short times, since they involved
calculating the terms in a Maclaurin series (in time) for the scattering data. In
Section 3 we will show how to easily recover these Maclaurin series results.

In Sections 4 and 5 we establish an integral kernel representation for the
scattering data and show how the analyticity requirement serves to restrict the
kernels. We then use this restriction to find a single nonlinear, nonlocal partial
differential equation, involving no unknown potentials, for the single independent
kernel. In this formulation the only freedom is in the choice of the boundary
condition, Q0(t). Thus, we have eliminated the apparent need to overspecify the
boundary conditions in order to determine the time evolution of the scattering
data. The appeal of this approach is that it seems to provide a direct, but
nonlinear, pathway from specification of the boundary condition to calculation
of the scattering data.

Of course, one of the major advantages of the IST approach has always been
the fact that it gives the solution to nonlinear problems through linear means.
This advantage is lost in the approach discussed above. In Section 7 we present
an approach in which the kernel from which the scattering data is constructed is
recovered from the solution to a linear integral equation. In writing down this
linear integral equation we are free to choose only one function of one variable,
H,(t ) . The scattering data for the forced Toda lattice is, of course, a function of
two variables. Thus we have found a reduction of the problem from two variables
to one. No other method has achieved such a reduction. The remaining unsolved

'Fokas (261 has recently established a nonlinear integral-differential equation (with singular kernel)
for the time evolution of the scattering data of the nonlinear Schr6dinger equation.
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problem is to understand the mapping of the boundary condition, Q., into the
function 111.2 Of course, that may be the most difficult part of the problem. If so,
we have at least delineated what the remaining problem is, and have given the
analytic structure of the solution.

2. Background

The forced Toda lattice [8-15] is a semiinfinite Toda lattice [16] with the leftmost
particle driven by some external forcing. The equations of motion are

Q.- - exp(Q._ 1-Q. ) -exp(Q.- Q, 1 ), n = 1,2,3,.... (1)

(Here and in what follows time derivatives will be denoted by primes.) Qj(t) is
the displacement of the nth particle in the lattice. Q 0(t) is a specified boundary
condition, and the initial data (Q.(0), Q1(0)) are given.

The scattering data for the forced Toda lattice can be recovered from a
function X(z, t) which satisfies the second order ordinary differential equation
[121

X" + [exp(Qo- Q,) + Q ( Q0 + A)]X = 0. (2)

X is given in terms of the spectral parameter z by

X = z + I). (3)

Here Q0(t) is the position of the leftmost particle in the lattice, which is the
externally specified boundary condition. Q1(t) is the position of the second
particle in the lattice, which is of course unknown until after the problem is
solved. Two different approaches have been used to try and resolve this diffi-
culty. Numerical studies 113] have been used to make physically reasonable
approximations to the function Q1(t). This approximation is then used in
Equation (2) to find X(z, 1). The other approach, which we will use here, exploits
the analytic properties of the inverse scattering transform for the forced Toda
lattice [12, 14, 19, 20].

Analysis of the forced Toda lattice IST shows that the function R(z,t)
defined by

R(z,it) = -x(z, t)exp[ Z-11 (4)
2

must be an analytic function of z inside the unit circle, Iz-I -1[12, 15]. In general,

2The inverse of this mapping is trivial. Given H1, we can determine the boundary condition and the
entire solution by solving our linear integral equation.
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the solutions of Equation (2) will not have this property. Hansen and Kaup 1141
were able to show that if the solutions X(z, 1) of Equation (2) are required to
have this analytic property, then the Maclaurin series (in t) of the unknown
potential QI(t), and hence the Maclaurin series of the scattering data X(z, t), are
determined. This result is clearly of only limited practical use, since it only allows
us to approximate the scattering data for very short times. In what follows we
will show how to make progress toward a more useful result.

Let us rescale the quantities in Equation (2) in the following way:

= -2iz, (5a)

1= Z ) (5b)

q(t) = -Q'(t), (5c)

r(t) = exp[Qo(t)-Q1 (t)J -1 + Qg(t) -Q[Q6(t) 2. (5d)

Equation (2) then becomes

S" + [E2 + ikq(t)+ r(t)]S 0, (6)

where E and k are given by

Ek = 4 (7)

Finally, we note that the function R(z, t) appearing in Equation (4) becomes

R(z,t) = S( ,t)e - Et. (8)

Therefore, S( , t)e- IE must be an analytic function of " for Itl < 2. The
potential, q(t) appearing in Equation (6) is given in terms of the known external
forcing Qo(t) by Equation (5c). r(t) is unknown, since it involves Q(t), as shown
in Equation (5d).

Equation (6) has been extensively studied for t E (- oo, oo) and with both
potentials q(t) and r(t) given [21-24]. Here we will study Equation (6) for
t - [0, o) with initial data

S(t,0) = 1,
(9)

S'(Q,0) = iE + q(0).

The initial data (9) correspond to a lattice which is initially static, except for the
zeroth particle, which is impulsed with velocity - q(0).
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3. Maclaurin series for the scattering data

Hansen and Kaup [141 have shown that the requirement that the scattering data

have the correct analytic properties is sufficient to determine a Maclaurin series

expansion (in time) for the scattering data. Let us see how this result follows very

simply from the initial value problem (6), (9) and the analyticity requirement.

Define

F( , t) - S( ', t)e -iEI - O ), (10)

where

Q(t) 2 f q(s)ds.)

F is an analytic function of " for Ij' < 2, so we can write

F(G,t 0 E. F.(t)i It:1 < 2. .J12)

Using this expansion in the initial value problem (6), (9) we find

F0 '(t) - 0, (13a)

F R(t) - R'(t)F(t) + q(t)Fo'(t) + F"(t), (13b)

F'= R'F._ + qF.'-I + F,,-'I + F.-. 2 + qF,,.- 2 , n > 2, (13c)

with initial data

F(0) = 8".., (14a)

JI,(0) = 0, (14b)

where R(I) is given by

R(I) - f(r(s)+ q'(s)+[q(s)12)ds. (15)

The differential equations (13) together with the initial data (14a) alone would

determine F,(t) for n = 0,1,2,3,... if R(t) were known. Since R contains r, it is

in fact unknown, and the second initial datum (14b) serves to determine the

Maclaurin series for R(t).
Solving (13a) subjcct to the initial data (14a), wc find

Fo(t) - 1. (16)
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The initial data (14b) are then automatically satisfied. Using (16) in (13b),
together with the initial data (14a), we find

=(t) = R(t). (17)

Requiring that (14b) also hold for n =I then gives

R'(0) = 0. (18)

Similarly, solving (13c) for n = 2, subject to initial data (14a), gives

F2() = fo[R'(s)R(s) + q(s)R'(s) + R"(s) + q(s)] ds (19)

Requiring (14b) to hold for n = 2 then gives

R"(0) + q(0) = 0. (20)

Continuing this process will generate all the coefficients R(")(0) in the Maclaurin
series for the unknown potential R(t), and thus generate the Maclaurin series for
the scattering data. To proceed beyond the Maclaurin series approach we must
exhibit in a more explicit way the dependence of the scattering data on '.

4. Integral kernel representation for the scattering data

S(', t) satisfying Equation (6) with initial data (9) can be expressed in terms of a
pair of transformation kernels N(t, s) and L(t, s) as [151

t) = eQ(t)(e Et + f_,[N(I,s)+ !L(t,s)Ie-Lsds}. (21)

The kernels N and L satisfy a system of linear partial differential equations

[1 J7 + q(t)(a, + aj)+ R'(1)] L(1, s)+ q(t) N(t, s) = 0, (22a)

[ -a+q(t)(,-a)+R'(t)]N(t,s)+q(t)L(t,s) = 0 (22b)

with boundary conditions

N(t,t) 0 0, (23a)

L(0,t) - 0, (23b)

N(t,-t) - -IR(t), (23c)

L(t, - 1) = - + le-2 0 ('). (23d)
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If both q(t) and r(t) were given, the partial differential equations (22) with
boundary conditions (23) would uniquely determine N and L. In our case q(t) is
given but r(t), which appears in both the partial differential equations and the
boundary conditions, is unknown. We will show below that by requiring S( ', t)
to have the correct analytic properties we will obtain a relationship between the
kernels N and L which serves to eliminate the unknown quantities.

5. Analyticity requirement

As discussed above, S( , t)e - Et must be an analytic function of r inside the
circle Ifl = 2. In general, the solutions S( , t) constructed from Equations (22)
and (23) via equation (21) will not have this property. Therefore, we require

4 t"S(t,t)e-E'd - 0, n - 0,1,2 (24)

Using the representation (21) of S( , t) in Equation (24) and [25]

,2 e-'Edt= 47J.. , (6), (25)

where J. is a Bessel function of the first kind, we find

f' [N(t,s)J,(t+s)+L(t,s)J,+,(t+s)]ds - 0, n = 0,1,2,.... (26)
_I

Thus N and L are not independent. Using [251

fo" dx
J,,+(u) f= J.(U - x)J(x) ' - (27)

we find that if S(, t) is to have the proper analytic structure in , N must be

given in terms of L by

'(t~~~~s) -, f ( S .,( - ,,)
N(1,s)- L(tu) o -u- " u. (28)

Equation (21) then gives the scattering data in terms of L alone:

S( t)- e("{( eIEt + fJ[,(t + s, E)+ -rI]L(ts)e-Eds), (29)
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where

,,(z,E) = :J(x) e e x. (30)

6. A partial differential equation for the scattering data
involving no unknown potentials

We can use the relationship (28) between N and L in the partial differential
equations (22) and the boundary conditions (23) to find a p.d.e. and boundary
conditions for L alone which involve only the known potential q(t).

First, notice that the boundary condition (23a) for N is automatically satisfied
by (28). Using (28) in the boundary condition (23c), we find

R(t) - 2 duL(t, u) J,(t + u) (31)

Using (28) and (31) in the p.d.e. (22a) we find an equation for L alone:

[, -, 2 + q( t )(a,+ )+ R'( t )]L( t , s) - q( t ) f 'duL( t ,u) s.u)

(32)

with the boundary conditions

L(t,t)= 0,

(33)
L(t, - t) = - I + le- 2Q(I

Equation (22b) is then satisfied identically, due to properties of the Bessel
functions.

Neither the p.d.e. (32) nor the boundary conditions (33) involve any unknown
potentials, since R(t) is given in terms of L by Equation (31). Thus, given a
function q(t) (which represents the external forcing of the Toda lattice), L(t, s)
and hence the scattering data S(', t) should be determined. The solutions to (32)
would thus provide a mapping from boundary condition to scattering data.
Unfortunately, the p.d.e. (32) is nonlinear and nonlocal, it is far from clear how
to solve it even for a simple forcing, and the existence and uniqueness of
solutions remains an open question. To try and avoid these problems we will next
consider the linear integral (Ge'fand-Levitan-Marchenko) equations satisfied by
N and L.
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7. Linear integral equations for the kernels N(i,s) and L(t,s)

S(r, t) satisfies the linear dispersion relation 115)

- _ e. (-)(I)e- dt' (34)

where

S(,t 0 s(E 4 S ) (35)

The contour A passes above all the poles of the scattering data, p(r), in the
complex t plane. (For details, see reference [15].) Using the representation (21) of
S(', t) in the linear dispersion relation (34), we find the following linear integral
(GLM) equations for N and L:

N(1,z)- H2(1-z)f- L-N(ts)H2(-s-z)+ L(t,s) H(-s-z)]ds = 0,

(36a)

L(t,z) - H,(t- z)- f [N(t,s)H,(-s- z)+ L(t,s)H2(-s- z)] ds = 0,

(36b)

where

n.(Z) M f t "(t)e-' d (37)

The (H.(z)) are related by

H.., - n.- - 2H.1, (38)

so two of them may be chosen independently, corresponding to the fact that in
the original ordinary differential equation, (6), there are two independent poten-
tials, q(t) and r(t). In what follows we will show that by requiring S(t, t) to
have the correct analytic properties we reduce to one the number of functions
H.(z) which can be independently specified.

Using the relationship (28) between N and L in the GLM equations (36), we
find that the (H.) must be related by

H2 (Z) - - 11(z), (39a)

H3 (z) - -12(Z), (39b)
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where

(d(z) r oG(z-x)Jj(x)-- (40)

Thus, once H, is given the other H,, are all determined. The relationship

H3(z)- Hj(z) - 2H(z) (41)

required by Equation (38) then holds identically, due to properties of the Bessel
functions. Using Equations (28) and (39a) in the GLM equation (36b), we find
(after a change in the order of integration) a single linear integral equation for
L(t, z):

L(t,z) - H(t- z) + Jt r(t-z,s+z)L(t,s)ds - 0, (42)

where the kernel r is given in terms of H, by

r(a,P),w f0l(,,) JI(X+
fx +p dx. (43)

Thus, in Equation (42) we are free to specify only one function, H,(z).
This procedure for finding the time evolution of the scattering data S( , t) of

the forced Toda lattice can thus be summarized as follows:

1. Choose a single function H,(z).
2. Calculate F(a, P) from H,(z) using Equation (43).
3. Solve the linear integral equation (42) for L(t, s).
4. Calculate which forcing Q(t) led to this solution by using the boundary

condition (23d) on L(t, s).
5. Use Equation (29) to construct the scattering data S( , t) from L(t, s)

and Q(t).

Unfortunately, we do not know until after the fact which forcing led to our
solution, since Q(t) [and hence q(t)] is not known until after the linear integral
equation (42) for L(t, z) is solved. However, as shown in an appendix, if we are
given a forcing Q(t), we can calculate L iteratively from the linear integral
equation (42) and the boundary condition (23d).

8. Summary and conclusions

We have outlined three approaches to the problem of finding the time evolution
of the scattering data for the forced Toda lattice. All three approaches exploit the
analytic properties of the Toda lattice inverse scattering transform.
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The first approach, using Maclaurin series, has the obvious advantage of
simplicity, since it deals directly with the ordinary differential equation satisfied
by the scattering data. However, the results obtained by this method are of
practical use only for very short times.

The second approach, as outlined in Section 6, gives us a single partial
differential equation to solve, with the external forcing displayed explicitly. This
indicates that specification of the boundary condition is sufficient to determine
the scattering data for the forced Toda lattice. However, this p.d.e. is so
unpleasant mathematically tha. it is hard to imagine that it gives any practical
advantage over using direct numerical integration of the Toda lattice equations of
motion.

The third approach, outlined in Section 7, involves the solution of a linear
integral equation and so is probably the method which would be most useful in
practice. However, it has the disadvantage that it appears to be impossible to
determine which external forcing is being used until after the linear integral
equation has been solved. This problem is avoided in the approach mentioned
above, which deals directly with the partial differential equations (22). However,
the approach outlined in Section 7 has the advantage of allowing the scattering
data to be constructed through the solution of linear integral equations, while the
approach using the partial differential equations is nonlinear. In our view, the
outstanding problem is to determine the mapping from the boundary condition
Qo to kernel H, which appears in the linear integral equation (42).

Appendix. Iterative solution of the linear integral equation for the
scattering data

The linear integral equation (42) can be solved by iteration in powers of the
external forcing Q(t). In this appendix we present the results of such an
expansion through second order. We expand L and its boundary conditions as

L(t,s) = E L'"n(t,s),
n-O

t)= 0, (Al)

0, n =0,
- t) -- I[2Q(t)]"

n! n-,2,3.

We also expand H, (and thus also r):

00

HI(z) E E H(")(z). (A2)
,-O
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In zeroth order we rind

H °0 (z) = 0,
(A3)

L()(i, z) 0.

First order gives

H( 1) -

(A4)
L)( t, z ) Q= _ (1 2_.)

Finally, second order gives

HI2) ( t) [Q(!)]' + 4f ,o'2dU fo,/2dWQ(U) Jj(2w -2u) w)
2wQ 0)2w-2u Q(w),

(A5)

L(2)(,z) H' -z -uJ(2w -2u + t + z )

H 2)(tz)-4'dUf('- dwQ(z) 2w-2u+it+z Q(w).

The iteration can clearly be continued to any order in the external forcing Q(t).
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The Third-Order Singular-Perturbation Expansion
of the Planar Cold-Fluid Magnetron Equations

By D. J. Kaup and Gary E. Thomas

The singular-perturbation expansion of the plasma cold-fluid equations for
crossed fields in a planar geometry is presented. The general expansion is carried
out to third order. Various instabilities that occur in the first, second, and third
orders are discussed.

I. Introduction

Magnetrons and other crossed-field devices have been in existence since the
1940s [1]. Over the decades a broad technology base for building and designing
such devices 121 has been developed. However, most of this technology is a result
of employing empirical methods. The major reason for this is that the strongly
nonlinear nature of the basic crossed-field interaction mechanism has made it
very difficult to obtain a good understanding of the physical processes which
occur in these devices. Without this understanding. accurately predicting the
operation of crossed-field devices has not been possible.

Motivated by the need to predict and improve the basic performance of these
* devices for radar and other applications, a novel approach to developing a

strongly nonlinear theory was undertaken. This approach was to apply soliton
techniques to modeling the nonlinear interaction mechanism in crossed-field
devices [3-5]. Given that it would be extremely difficult to solve the fully
nonlinear problem, a model problem was chosen which could contain enough
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truth to allow some predictions to be made that could be checked against
available experimental data. The early work [3-5 showed close agreement
between predictions of the strongly nonlinear theory and available data, implying
that the basic approach was indeed valid. As a consequence, extensive effort has
been undertaken to place this novel approach on a rigorous footing by working
to bridge the gap between linear theory and this new, strongly nonlinear theory
through the use of standard multiscale perturbation methods. In addition, it was
hoped that assumptions used in the original work could either be further justified
or removed entirely.

In this paper the geometry used for the multiscale perturbation expansion is
the planar magnetron shown in Figure 1. This device has a cathode at y - 0 and
a parallel anode at y - 1, with a large positive voltage difference V applied across
the anode-cathode interelectrode region. In addition, one has a perpendicular
magnetic field which is sufficiently large to return any emitted electrons to the
cathode, thereby producing "magnetic insulation." We shall ignore any z-depen-
dence, and assume that the device is infinite in extent in the z-direction and that
the solution is invariant under any z-translations.

In actual devices, there is also either a "slow-wave structure" or a set of vanes
on the anode. The purpose of these structures is simply to select and/or limit the
possible wavenumbers which will propagate. For simplicity, we shall assume the
anode to be smooth, realizing that any solution we find could be either limited or
enhanced depending on these structures.

Az

Electron _ _ _ _

Sheath - op

/ Cathod
r 1/ y/ /

Figure 1. Geometry and the shear flow in the planar magnetron.
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At startup, one first turns on the magnetic field, then the voltage. What is
thought to occur is a rapid buildup of an electron sheath around the cathode. The
final sheath is considered to be a laminar shear flow of electrons caused by the
EXB drift. One expects the number density of the sheath to increase until the
electric field vanishes at the cathode due to the space charge above the cathode.
When this occurs, then no more current can be drawn from the cathode, and
presumably an equilibrium is established. However, at first there is nothing which
specifies or determines the density profile of this sheath. It is usually assumed
that the density profile is box-shaped, as shown in Figure 2(a), and that the
density is a maximum ( - fe). However, there is nothing in the zeroth-order or
the first-order cold-fluid equations to prevent other density profiles from occur-
ring, except that density profiles with positive density gradients are known to be
strongly unstable [6-8] and tend to relax to profiles without positive density
gradients. Thus the combination box-and-ramp profile shown in Figure 2(b) is
also a valid profile to consider.

After the sheath is formed, what happens next is not entirely clear. The
classical explanation is that a high-wavenumber, linear instability exists [9]. Due
to thermal noise, this instability will be excited, will grow, and eventually will
saturate. While there seems to be nothing wrong with this explanation, neverthe-
less nobody has yet built a device based on it. Neither does this explanation
explain the narrow operating range of such devices. This indicates that either the
theory is wrong, or essential physics has been omitted.

In this paper, we describe the singular perturbation expansion of the cold-fluid
equations for the planar magnetron. Each order in the expansion (out to third
order), is reviewed: we describe the main features of that order, how it could
interrelate with the other orders, and what its consequences are, and we list any
important open questions. The purpose of this is simply to detail what is certain,
to clarify what is unknown, and to attempt to specify what must be determined.

ny) n(y)

0 Y_ 0 y-

(a) (b)
Figure 2. Two standard density profiles: (a) Brillouwn flow (square profile) and (b) square-plus-ramp
profile.
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We start with the cold-fluid, nonneutral, single-species, plasma equations
coupled to Poisson's equation:

an + V.(nv) =o, (a)

a,v + (v.V)v - Vib + v x = O, (1b)

V 2 -n=o, (1c)

where 4, is (e/m) times the electrostatic potential, n is the plasma frequency
squared, v is the velocity, and 0= - Uk, where 0 is the electron cyclotron
frequency. In lowest order. the system shall be independent of x and t, with only
a y-dependence. On top of this, we shall impose a small rf plane wave, which will
drive the entire system, and we shall follow the consequences of this perturbat;on
out to third order, In addition to the plane wave, we shall also assume a
long-wavelength modulation of the plane wave, parallel to the anode. Thus we
expand all our physical quantities (n, q,v) as

nn 0 + En, + 2
2 +E 3 3 "n3 + , (2)

where e indicates the amplitude of the perturbing rf wave. We expand the
high-order terms as

"j - [Aieo(kx - 1) +c.c.] + nl°0 ,  (3a)
f = [A(2)e2e(Ax-.') +c.c.J + [ '2e"-"A + c.c.J + (3b)

where k is the parallel wavenumber and 0 is the frequency. All the above
coefficients [n 0 , A ,n"(1 ), fO (2), A2, n (2 , etc.] are considered to be functions of the
following slow variables:

X = EX, (4a)

T = Ei, (4b)

Ir =i E21, (4c)

T' - 3 . (4d)

Needless to say, unless otherwise stated, all quantities are also functions of y,
which is assumed to be of the same scale length as x.
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1i. Zeroth order

This order specifies the background on which the rf wave will propagate. The
resulting equations are

Vo= yon, = Y~o/1, (5a)

a no, (5b)

where no(y) is arbitrary. Imposing the space-charge-limited current condition
gives

ao = 0 , (5c)

which, with 0o(Y = 0) = 0 and the specification of no(y), uniquely determines
the solution. Of course, 40(y = 0) must be the applied anode-cathode voltage,
which places one restriction on the choice of no(y). In general, no may also be

dependent on the slow variables X, T, r, and r'. But these dependencies will not
enter until the higher orders.

Ill. First-order DC

This order describes how the background responds to the long spatial scale. Since
no(y) is arbitrary except for the voltage condition, we may scale n(O) to zero by
redefining n o + enf°  to be the new no , without any loss of generality. Then we
have

( (o ) = SIo, (6a)

- A2,,(o) = o), (6b)

- = Seo (6c)
Iex I ly (c

. (6d)

where the sources are

S(0) = - rno - a,(novo) '  (7a)

S(01 = _ arVo _ VO xVO, (7b)

SIM - 0, (7c)

S 0, (7d)
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and we have introduced

A' =S2, _ no, (8)

which is assumed to be positive definite.
From Poisson's equation (6d) and (7d), if the voltage difference between the

anode and cathode is to remain fixed, then the only solution is

= 0, (9a)

which with (6c) and (7c) gives

o 0. (9b)

Now (6b) gives the solution of

V(o) -T(9c)
ly - ( 8TV0 + V0 8XV0), 9

while (6a) and (7a) may be integrated and combined with (9c), which results in

aTa/yOo + (da/ o)a~aXpo - ?axo - Asc, = 0, (10)

where CI(X, T, T) is a constant of integration. This constant can be evaluated for
the fixed voltage condition by simply integrating (10) from the anode to the
cathode. Since

a70 0(y = O) 0 =r, o(Y = 1), (11)

one finds

C, A2dy, (12a)

where

U = fo(apo)2dy (12b)

is proportional to the electrostatic energy stored between the cathode and anode.
An interpretation of C, follows upon differentiating (10). This gives

rno+C- "+)no + ---- xn -0 . (13,
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Obviously. (13) shows that lines of constant n0 are convccted by the flow

aop -_. + C, dxqkO

U = I- + jC -- (14)

Thus C1 is a vertical velocity, in addition to the ExB drift velocity, which
convects no, and arises from the fixed anode-cathode voltage. In contrast to this,
if we had used the fixed charge conditions on the anode and cathode, then we
would have required a$0so(y - I) to be fixed. Assuming nu(y = 1) = 0, Equation
(10) would then give C, - 0, upon evaluating it at y = 1. In the fixed-voltage case,
the direction in which lines of constant no are convected could be either up or
down, depending on the values of C, and axco . In general, if 8XU > 0, the
convection tends to be more upward, while if nearby the value of axU is negative,
then in that region the convection tends to be more downward. As a consequence
of this, we would expect a vortex cell to form wherever this counterflowing
convection occurred.

Although the evolution equation (10) is fully nonlinear, it still could be
analyzed in the weakly nonlinear limit by additional singular-perturbation expan-
sion, which would result in the KdV equation 110-121. A report on this is
currently being prepared. An important consequence of this is that once al o
becomes nonzero and it is positive somewhere and negative somewhere else, then
eventually at least one KdV soliton will grow and form.

At startup, one would like to consider the background to be smooth and
stationary so that the above equation could be ignored, at least until some linear
or nonlinear instabilities have had time to grow up out of any noise. However,
once any long-scale variations have been introduced into the background, then
this order can no 'longer be ignored, and it will require the fully nonlinear
evolution equation (10) to describe the evolution of these long-scale background
variations.

IV. First-order fundamental

This section covers the same material as in the short-wavelength linear stability
theory. The classic work of Buneman, Levy, and Lindson 19] is the usual
reference on this order. However, they only considered the box profile in Figure
2(a), as have many others since 113-15). More recently, Davidson and others
[6-8] have considered various other profile shapes in studies of the resonant
diocotron instability. However he has mostly emphasized profiles with positive
density gradients, since these demonstrate the strongest resonant diocotron
instability.

As far as is known to us, no linear stability analysis has ever been done on the
ramped profile shown in Figure 2. To understand why this latter profile would be
of importance we point out that in the absence of a finite nonzero density
gradient, certain terms vanish from the cold-fluid equations. These terms are also
the terms which are responsible for the resonant diocotron instability. Thus the
box profile can have different modes than the ramped profile has.
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For now, let us present the linear equations of this order. They are

-iwf.A + ikno 1j, , + 8,(no1 .) = 0, (15a)

A2

- - ik41 - A2 .,,= 0, (15b)

- , - a + S26, = 0, (15c)

(d' k2), 1 - , = 0 (15d)

where we have introduced

w, - w- kvo, (16)

which is the frequency as seen by the streaming electrons. Since the anode and
cathode are conductors, we must impose the boundary conditions

$1(y =0) = 0 = 1(y=). (17)

In general, this overdetermines the solution except for certain values (complex
in general) of w, which are the discrete eigenfrequencies, and the corresponding
solution is called the eigenmode. These eigenvalues depend on the density profile
not only through no in (15a), but also through vo in (16) and A2 in (15b). The
standard way to solve for the eigenspectrum has been to reduce (15) to a
second-order differential equation for 4,, as in Reference [7]. However, this
introduces a false singularity wherever w, = .This can be avoided by reducing
(15) to a second-order differential system for the velocities instead. Thus let us
take

61. = iu4'/k, (18a)

bly = pI/A, (1 8b)

= ( k 2 , (18c)

i = p4Q, (18d)

where p and u are functions of y, 4 is an amplitude and is only a function of the
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slow variables, and

2kno o (19a)
Q A = 2  A '(1a

A 2(19b)

If we also define

k2  kD.,n o  2k2noA2

B k 2 kA o 2A 2  (19c)

then (15) reduces very nicely to the linear second-order system

dyp = Au, (20a)

8Yu = lp, (20b)

which only has singularities at w, = 0 and ± 12. From (17) and (18c), one can
obtain the boundary values for p and u.

V. Second-order DC

This contains the quasilinear theory of Davidson 171 and also has been covered in
116]. The equations are form-wise identical to the first-order DC equations, (6),
except for the sources. They are

a.(n v(°1) = o (21a)y\02y S 2

-2 o- So, (21b)

2A- =2 STV (21c)

2= 2o, (21d)

where as before, we choose n(° ) = 0 without loss of generality. Now, the sources
are

$2°n= - n- 0a( A l*6 + C.C.), (22a)

21°) -aVo-(oa, +c.c.), (22b)

S 0Y Y( 6. ) - (ikO'/., + c.c.), (22c)

$2) 0 0 (22d)

where c.c. stands for the complex conjugate of the preceding term.
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Solution is now straightforward. Equations (21d) and (22d) yield a unique
solution for OT0) upon imposing the boundary conditions

0(20(y=o) = 0 = 0 )(y =1). (23)

Then (21c) and (22c) yield the solution for 01 , (21b) and (22b) yield 0)) and
(21a) and (22a), upon integration, give the condition

a'o- =2C2  A2( O +c.c.) n

--- -ff ( 8Y6 1, + C.C.),

where C2 is the constant of integration. Making use of the solution (18), this
becomes

aa,40 - A2C2 = Ddyno, (24)

where

D = EDk (25a)
k

ano

2y(p*4*)(p*p) 2y,
Dk -(w-*,(A*A) e (25b)

and y is the imaginary part of w, (If we had more than one linear mode present,
then the total D would be equal to a sum over all modes [16] of the individual
D,'s.) Differentiating (24) once more gives

an0 + C28Yn o = ay(DaynO), (26)

which one immediately recognizes as a diffusion equation for the density. As
before, the constant C2 is determined by integrating (24) from the anode to the
cathode under fixed-voltage conditions. This give

f o D(- 8.no) dy (27)

which for 8Yn0 <0 and D>0 gives C 2>0.
There are several consequences of (26). First, although a general arbitrary

initial condition would have a combination of modes with both positive and
negative values of y, due to the e2 y' term in (25) one expects the unstable modes
to eventually dominate, thereby driving the total D positive.

Second, as a function of y, D is largest wherever the magnitude of w, or A is
smallest. The values of y where this occurs are the positions of resonances. We
define the diocotron resonance to be where the real part of w vanishes, and the
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cyclotron resonances to be where the real part of w, is equal to either + Q or
- G. Thus by (25b), diffusion of the density is maximum at these resonances.
This maximum rate of diffusion will cause plateaus to form wherever an unstable
mode has any resonances 116].

Third, since the diffusion rate is proportional to the density gradient, a box
profile, which has an infinite discontinuity, is unstable against diffusion, and will
instantaneously shift toward the ramped profile shown in Figure 2(b).

Fourth, the positive value of C2 implies that there should be a net upward flux
of particles, since the operator a, + C2d1Y will tend to move lines of constant no
upwards.

Fifth, this diffusion only occurs for unstable modes. If all modes are stable,
then no does not diffuse or even change, and the background remains undis-
turbed.

Sixth, any slow spatial scales in 4' (such as the scale X) will be forced into the
background if D # 0. This follows from (24) and (25). If the linear amplitudes 4,
are functions of X, then so is D, and then within the time scale of r, the same
slow spatial scales will appear in no, due to diffusion. When this occurs, the
first-order DC equation, (10), becomes excited, and the density then starts
changing on the faster time scale T.

Seventh, (24) allows equilibrium profiles to exist. As mentioned before, in
zeroth and first order, there are no conditions which act to determine the profile
shape of no(y). However, here in second order, due to the diffusion mechanism,
there can exist profiles where no will be static. To see this, setting a,4 0 = 0 in (24)
gives

A2Oex(~ Y -dyA2  ~5 = _A(~f y) (28)

Note that if there is one dominant unstable mode, then by (27), the ratio of D/C
is time-independent; then (28) gives a unique profile shape, which presumably
the solution of (26) would relax toward. However, determining this equilibrium
profile requires knowing D, which requires the eigenfunction p(y) (see (25b)].
But the eigenfunctions depend on the background profile, so, we find ourselves in
a circular situation. How one can break out of this is not known. Although
numerically solving the coupled system of equations (20) and (24) should
converge to some equilibrium profile, still that problem remains to be treated.

Lastly, I wish to point out that quasilinear diffusion is not the only important
consequence of this order. Even if there are no unstable modes (D = 0) and no is
stationary, then there is always at least a shift in the shear flow, even if the
background has no slow spatial scales. From (18), (20), (21), and (22), one finds

V C, + noV a Y((*P)2 )e2fl, (29a)

• a, ai00 + 4° f (M',B +c.c.)e' (29b)
AA2 *
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[If one had several linear modes present, then the last terms in both (29a) and
(29b) would be replaced by the appropriate sums over k.] These last terms in (29)
are always present regardless whether all modes are stable or not.

VI. Second-order fundamental

The main consequence of this order is to determine the group velocity. Since it
may be useful at times to evaluate these higher order solutions numerically, we
shall briefly discuss several methods which would be useful. The equations of this
order are formwise identical to the first-order fundamental equations (15), except
that in this order they have sources. They are

-ioAw2 + ikndO2 x + ay(no*2 y) = S r.), (30a)

A2 "

-(4 2 . - k42  02 y = o)l (30b)

- i,'y a- 2 + = (30c)

y02 - k 2 n2 = S2= (30d)

where
S2.') = - 8 TA, - 3,(vol) - d,(no31 .) - dy(nv,)). (31a)

SIX" = - 8rA. - ax(vO61.) + dxbl - v (° a ^ (31b)

2 = - aY - o ,.,- a,(V? 1 ) (31 c)

2 ) = -2ikdx~j 1  (31d)

If we take the background to be independent of the slow variables, then these
sources are linear in 84 and a.p. Thus the general solution will be of the form

. Ut2rOrT4 + U2x ax (2a
2x = k(32a)

P2rTr4 + P2xaOq

2y = )A '(32b)

a+ 4x vodd4 uwe/k - pA2/(AS2)
V +(ax¢) k 2  , (32c)

2 dx
h2 l(a(,)P2TQ + 4(8 P,2XQ + 2pn )  C32

~8,n 4kwen2)(3d
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where P2T' Px, U2T, and u2x satisfy the equations (a= 2T or 2X)

3,.p. - Au.= R., (33a)

.- Lia = /(33b)

with

122 + W2 3a

R 2 r - 2iknop 1 (34a)

2pnow, uA
R 2x = voR 2 +i A - (34b)

A2- ( k,.no 4k 2 noA2w. (34c)Ri2r =ip k--- - A3 , ,J('

Afl2 - 2n (2
R2x = vOR 2T - ipk A 2W2  (34d)

Let us now describe how the solution in this order could be constructed. The
boundary conditions in this order are again

* 2 (Y-0) = 0 - i2(Y'1) (35)

To the solutions for (p., u.) we can always add an arbitrary amount of the
homeogeneous solution (p, u). This has the consequence that we may arbitrarily
set either p. or u. equal to zero at y - q. At y = 0, it is then po.s ible to set the
coefficients of both 8TO and 8A. in 02, (32c), equal to zero, by judiciously
choosing the initial values for p. and u.. One then integrates (33) forward to the
anode. The solutions for p. and u. are now unique. In general, 02 evaluated at
the anode will be of the form fTrr+,8Oa, where fT and f. are two
constants. Thus (35) then demands

a0ro + caxo = 0, (36)

where c - fr/fT is the group velocity. The major consequence of this order is

that the rf amplitude 4, will evolve with the group velocity c on the time scale
of T- et. The value of c may be determined by the above procedure of inte-
grating (33).

An alternative procedure is to use the Wronskian relationship. From (32a),
(32b), (331 id (20), we have

(AU, + 2.) (T)(uR2T - AT)+ (,)(uR 2 -PA 2 ) (37)
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Integrating (37) from the anode to the cathode results in (36) and the initial and
final values of 62x and 62,, which follow from the boundary conditions (35).

A last alternative method for calculating c is directly from

dw
C a- dk (38)

If one differentiates (15) with respect to k and X, identifies

A2 - i'xaknl, etc., (39)

and sets

c(dX04) = -a, (40)

then one obtains exactly (30) and (31). Thus the solution of (30) and (31) must
give a value for c which is equal to (38).

VII. Second-order harmonic

The equations in this order are again formwise identical to those of the first-order
harmonics, except that w(k) is replaced by 2w(k). These equations are

-2iwA(
2  

-- (2) = (41)-2;: + 2;kno6(2) + a,( 2y, S2("

2x'

2x (n2 (41ba)

- 2iw:i5:) - 2 2x , (41c)
S ,2) 2 (4k2 2) - A(2) S(2)4

y02 4 2)- = 2 # (41d)

where

2(2) = - 2ikAA. - dY(A 16).), (42a)

S) = _ik( 1.)
2 _ oy1 Ya1., (42b)

S2 - ikO,0,y - blyd ,y, (42c)

$20) - 0. (42d)

The only significance of this order is that it contributes to the nonlinearity in
third order, and to fully calculate the coefficient of nonlinearity, it is necessary to
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obtain the solution of this order. The general solution is of the form

0(2) U. n u22 (43a)

62. 2P22
2y ,1 A2 ' (43b)

(2) i,( P 2 2 A2  u 22 W, +02p2_BIA-_u_ 2

22 A 2 TO 2 2k ' (43c)

( " n yn) + 2 2u 2n°+2nopu(+/A)
hn2 ) DA( -2 2A J A + pk24Q 2 , (43d)

where

+ no a( B  k ')

2 - 2w, + O,2kL. Y (

no L B + __ AY .) j 2 2 (44)
A2 1 [A 2w, Aj) a2 AJ]

A 2 =2 4 2 , (45a)

4k 2 - k(8dno)/(w, ) -8k 2A 2n/(S2A2)
B2 = A 2  (45b)

and u22 and P22 are determined by

8
1yP 22 - A 2u 2 2 = R 2 2 , (46a)

avU22- B2P22 = 2 (46b)

where

=22 4iwu 2 + 4iwoup9,Y(I/A) - ip 2d.,(Q/A)

_2i~S[ _ al k 2 B), (47a)

0A2

iAp 2 (kA B R)dy(k/A) (47a)
A kA

" i(no_-4,)p2 8Y(k 2/A 2- B/A)(4b
w,A2 4b
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The boundary conditions are again

i'_(y = 0) - 0 - (48)

Integration of (46) would require two solutions to hc obtained. The boundary
condition at the cathode will determine only one of the two possible initial values
for p22(0) and u22(0). After integration, when one imposes the boundary condi-
tion at the anode, then only one unique linear combination of these two solutions
will satisfy both boundary conditions, unless an eigenmode also exists at the
harmonic frequency (2w) and wavevector (2k). In general, this does not occur
except accidentally.

VIII. Third order DC

In the case that there are no unstable linear modes, then the background will
remain stationary up intil this order, which contains the ponderomotive force.
The equations are

=( u 3y t y, (49a)

_ __, o = S o (49b)

-3x ay4(O) =S3y S (49c)

0 = 30o (49d)

where

=3
) = - ,n0 - a, (nv (0)) - +c.c)

- ay(h2.6y +C C.+ h 't 2, + C C. (50a)
SIT = - a"ro + aTV(0) + x((°) ....(0)

- - (odVayb 2 , + c.c.) - yY , +c.c.), (50b)

= - a aT4} - oa Y - dav(o)
X2 YV8 O a ly 2y)

+(ikO,, ,x +c.c.) + (ik613 2x + c.c.)

- a7(oo'P2 + c.c.), (50c)

- - - I°). (50d)
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As before, from the above, one obtains the secularity condition (upon integra-
tion)

,&2

42C3 + yaxj8, n ,,ov dy

+ -2i af 0 (O*.f+c.c.) dy = 0, (51)

where C3 is the constant of integration and is to be determined from the constant
voltage condition.

Now consider (51) when there are no unstable linear modes and the back-
ground is independent of the slow spatial scale. By (29) and (18)

a,,8o + 3 - FraT(p) + Fxax( ,), (52)

where

FA = -o , A (53a)

Fx= -- 2fLta (p 2 )

A YA A k(5b

Referring back to (36), we see that (52) reduces to

a.a, o + A2C3 - (Fx-cFr)ax(4, ), (54)

which gives, upon differentiating,

a,.no + C38ao ax(#4/) ay(F- cF). (55)

The constant C3 is determined by integrating (52). Thus

q'Af dy - 8[(0 ) J( cFT)dy. (56)
0o

At the moment, it is not possible to discuss the general nature of the functions
Fr and Fx, and their integrals, as in (56). However, that is not essential for
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describing the nature of (55). This equation describes the motion of the back-
ground density due to an rf wave. It occurs on the time scale r' ( - e3t) and is
slower than all other effects described so far. What is important here is the fact
that the evolution of no is driven by dx(4*4). This is the ponderomotive force
(up to a constant factor). In one region it will drive the density to lower values,
while in another region where 8x(0*0) has the opposite sign, it will force the
density to higher values. Of course, as this occurs and as the background density
undergoes variations with respect to the slow spatial scale, the first-order DC
equations do then key in and become active. Consequently, it is of little use to
pursue this expansion beyond third order, because at this order, the first-order
DC equations will always become keyed in, and will thereafter dominate, being
of a lower order.

IX. Third-order fundamental

This order will give us the nonlinear Schridinger equation (NLS) [17-191. The
equations are

-iw~h 3 + ikn 0O 3. + dy(n 0 3.) = S1.1), (57a)

A2

- iWv3 - - " 3, = S3(.) (57b)

3y - ay03 + '2 3 . = Sly", (57c)

(' 0.,,- k ') 3- A3 =-3'# (57d)

w:,ere the sources are

S1.1= cXA2 - -A a(Vo A2) - "(nA 2 , )

- ik(fi[ + ,,6,2) + ,)

2 y yxl 2y

_ _ }. 2 a(2 (58b)
'yyt2x Wly 2x (58b)y~U~x

S3 = - VOaxb 2y - a,6 .,- 2ikjx?

- ik ( vT"Ot, - ,(,q, 8 X*,z.(o)

- 8y(V~oy6ly + 6li-ly 
+ 

Vly0)6]

- Y + A + y vt 2Y), (58c)

S - -2ikx 2 - OX0 1 . (58d)
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Before continuing, we shall make some simplifying assumptions. First, we
assume the background to be independent of the slow variables, and we take all
modes to be stable. Hence w is real. Then by (9) and (29)

v -"o = 0 = V() (59)

We shall also ignore all harmonic terms such as 2etc. We further simplify (57)
and (58) by factoring out the dispersive part. This is done by differentiating the
first-order equations (15) twice with respect to both k and X, using (38)-(40).
Then, upon comparison with (58) and (59), one observes that the third-order
solution is simply

A3= 2 xak"lI +  3, etc., (60)

where the 5-quantities satisfy

- i, S, 3 + ,k,,0 t3 + d,(,,o863. ) = SZ(' (61a)

A2

iW - ik 8 3 - "U 8 6, = X' (61 b)

_ iw, 6 63, ,3 + 8 03, = SSI! (61c)

(8.2  k2) 63-"13 = S3,, (61d)

and the 6-sources are now only

8S3 = _ ..AP (62a)

6S¢I = _ - . (62b)
'3X -- b1.Av2(Y x),

BS3., ' = - 961r, (62c)

-1,0 0, (62d)

where the operator .9 is

= , + ikvu - (dwa (63)

and from (29) and the above

= ,,42a(PZ) (64)
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All the remaining nonlinear terms only involve v2, which is the second-order
shift in the DC shear flow.

To obtain the NLS, we first obtain the equations for Sb3 and 663r. From (61)
and (62),

8.,(A 803y) + ikA S 3  = -iw, SD3'1 - 12 SC3(", (65a)

83.(-ikSOU3 )- AAkS ) + A ('e (65b)

where

SDV) a= 8Y SS(' + ik SS") +-LS +8S), (66a)
3y 3x e S3x + S 34')

SCV) = ay 8S, - ik6S3(. (66b)

Now, as a consequence of (20) and (65), we have

a,. ( A u 6 63Y + skp 6 63. )

-i(p-Af 2k  ,,,,u)03Dj)

Qu+kp 6C '. (67)

Lastly, integrating (67) from the anode to the cathode will give the NLS. One
must use the boundary conditions (17) and

43(Y = 0) = 0 = 8p 3 ' =1) (68)

along with (61b). One then reduces (67) to

g(8', + 1 A a2 + N ' 0 , (69)

where one can show that

,' p(d9no) ( k[2p I  noupA (70a)

2pau Aw, no, 2 , 7

N =+ -f. E , - (70b)
A 3we .( -0 A 0
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with .A given by

f ld2 , n o 4 n 2 2 n , 2 n o o p o 2 .I . +  " ++ (70c)

Now we have N and N given entirely in terms of the background quantities and
the first-order solution.

From this form, one could numerically evaluate these coefficients. However,
from the general structure it is possible for us to make certain general statements.
Consider first the N-term in (70a). There we see that the integrand is propor-
tional to 8,,11., Thus the integrand has a nonzero contribution only along a
density gradient. Furthermore, unless w, or A has a zero inside the density
gradient (thereby giving a logarithmic contribution to the integral), the quantity
N will be real for real w.

On the other hand, the second term, N, will in general he complcx if A or W
ever vanishes inside the plasma sheath. As one can see from (70c), there are
apparent singular terms whenever w, or A has a zero anywhere inside the sheath.
Thus, whenever X has a singular point inside the plasma sheath, a complex
value for N will in general result.

When this is the case, (69) reduces to a nonlinear Schr6dinger equation with a
complex coefficient, namely

8,q + -f -- dxq + FP*42 =0, (71)

where F (= N/N,) is complex in general. If the imaginary part of r were
negative, then a nonlinear instability would occur (while if the imaginary part
were positive, a nonlinear stabilization would occur).

X. Summary

As we have detailed here, the lowest-order instability is the first-order DC, which
is yet to be analyzed. However, because this is a long-wavelength instability, it is
not expected to be of any importance until some lower-order instability has
keyed it in. In particular, the second-order DC may key it in, on the second-order
time scale, if there is a linear instability. And even if nothing else is unstable,
then at least, after the third-order time scale, the third-order DC equations
(ponderomotive) will definitely key it in. However, before this last occurs, one
would expect the third-order fundamental equations to go unstable by the
nonlinear instability mentioned in Section IX. This instability will be on the
second-order time scale, and thus faster than that of the third-ordcr DC.
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It is shown that electrostatic Vlasov-Poisson perturbations that propagate
parallel to the magnetic field in a planar magnetron are stable for both
an isotropic and also for a particular anisotropic (T, = 3T,) temperature
distribution. The inhomogeneity of the electron density is fully incorporated
in the analysis. The proof makes use of only the dispersion relation of
Trivelpiece-Gould type, without actually solving the eigenvalue equation.
These results suggest, not unexpectedly, that these modes should be stable for
all such anisotropic velocity distributions.

1. Introduction
The stability of electron plasmas in crossed fields has been the subject of wide

investigation in connection with the operation of such devices as magnetrons,
diodes and crossed-field amplifiers (Buneman, Levy & Linson 1966; Thomas
1982; Chernin & Lau 1984; Davidson & Chang 1984, 1985; Ott et al. 1985). The
diocotron instability (Knauer 1966; Davidson 1974), among others, is the most
familiar instability encountered in the cross-field configuration; it is a
longitudinal (electrostatic) instability with the wave vector k perpendicular to
the direction of the operating magnetic field so that the electron drift velocity
vo is parallel to the k vector.

Non-neutral plasmas in the crossed-field configuration are inherently
inhomogeneous in the density distribution, and the velocity distribution is often
found to be anisotropic, so that the plasmas can be characterized by the

* . different temperatures along appropriate directions (Kaup, Hansen & Thomas
1985). A non-Maxwellian energy distribution of the plasma particles can often
give rise to electrostatic instabilities, so it is of interest to study the possible
instabilities of such a distribution. The purpose of this work is to investigate the
possibility of any unstable longitudinal waves propagating parallel to the
magnetic field in an inhomogeneous and anisotropic electron plasma as would
exist in a magnetron or ,elated microwave device.

Although it has been asserted that a parallel component of the wave vector
tends to reduce the growth rate, thus stabilizing an otherwise unstable wave

t Permanent address: Hanyang University, Korea.



(Buneman et al. 1966; Crawford 1967), there has been no specific analysis of the
high-density (' s 02), inhomogeneous and anisotropic regimes that one would
expect to exist in a microwave device. Thus there is a lack of understanding of
how a parallel component would tend to stabilize an unstable wave, particularly
for the Vlasov-Poisson system and for typical inhomogeneous and anisotropic
distributions that could occur in the crossed-field configuration.

In this paper we provide such an analysis, showing that, even with a
moderately strong anisotropic distribution, instabilities associated with
longitudinal waves propagating parallel to the magnetic field do not occur. In
particular, we find that certain general features of the plasma dispersion
function may be used to demonstrate the stability of these modes.

In homogeneous plasmas the propagation of waves subject to spatial
boundary conditions is characterized by an eigenvalue equation. Our proof only
requires the use of an effective dispersion relation of Trivelpiece-Gould (1959)
type, without actually solving the eigenvalue equation.t

This paper is organized as follows. In §2 the basic equations are introduced
and the equilibrium distribution function is discussed. The general procedure
leading to the eigenvalue equation is also described. In §3 the linearized
solution of the Vlasov equation is obtained for an anisotropic equilibrium
distribution function with three different temperatures. Differential equations
describing the propagation of the electrostatic waves are examined in various
limiting cases. Finally, we prove the stability of the wave, subject to the
boundary conditions of a smooth-bore planar magnetron, for the isotropic case
and then also for a moderately strong (T = 3T.) anisotropic case. The results
for these two different cases are identical. Considering the general case, we then
argue that these results strongly suggest that this mode will be stable for all
similar velocity distributions.

2. Basic equations and particle orbit in unperturbed fields
To describe our electron plasma in a planar magnetron (see figure 1), we use

the Vlasov and Poisson equations

+ v. vfe(E+ v x B.).Vf = 0, (1)+V.E M - eCf~

V. ve ffd 3V(2)

where the notations follow standard usage in plasma physics. The magnetic
field is taken to be entirely external and constant in time and space, and we take
the perturbations to be purely electrostatic. We shall designate by a subscript
zero the equilibrium (zeroth-order) quantities, which are the steady-state
solutions of (1) and (2):

(v. -±(E.+!v x B (3)

V. E0 ~4yefP0 dv. (4)

The relative directions of the crossed fields E0 and B0 are illustrated in figure 1.
t Strictly speaking, we only prove 'spectral stability', and not 'linear stability'. For a

discussion of these two definitions and this point, see Holm ef al. (1985).
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y~ X \A/

Fiou: 1. Geometry and electron orbits in the planar magnetron.

It is well known that (3) is satisfied by any f0 that is a function of only the
constants of the motion of the particle in the unperturbed fields E. and B.. We
have the following three constants of motion (Kaup et al. 1985)

P. = m(v.- Ov), (5a)

Pa = M,. (5b)

w = jrm(vt + v, +vt)- 0(y), (5c)

where Q2 = eBo/rC is the gyrofrequency and 00 is the electric potential
associated with the equilibrium electric field Eo (E0 =-VO0).

Thus fjp, p, w) satisfies (3), and the equilibrium density n0 = ffiod'v is
determined by (4) once the functional form of fo(p, p, w) has been given.

Now (1) and (2) are linearized with respect to the perturbed quantities
f' =f-fe and E' = E-E 0 to obtain

+v.Vf'- Eo ×B .Vf'=--vO'.V, (6)

V -V = 4neff'd3V (E' V ) (7)

Equation (6) can be solved by integration along the unperturbed orbit:

f(xv,t) e -- f di'V'(x', t'). Vf(x', v'), (8)

where we shall henceforth drop the primes on f" and 0'. We resort to normal-
mode analysis for (7), seeking the solution in the form

O(x, 8) = 4(y) e' - ,

which is appropriate for a wave propagating in the direction parallel to the
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magnetic field in a medium with inhomogeneity along the y-direction. Then (7)
and (8) yield

(k2+ 4 ne afo d'+ $(_40ef +dv 41re -d' afo _

=- 47ie'fdv w~L+k f d7 $(y') e"" (9)

where we have substituted the general functional form' of the distribution
function fo(x',v')= fo(pZ,ps, w); 7 = C'-t, and the orbits should satisfy the
initial conditions

f 0

Zz,'-z 0,} atTr=0, (10)
" V

In general, (9) is an integral equation for the potential 4. Instead of solving an
integral equation, we choose to expand $(y') about the position y:

&Pd d2$$( ' = (Y) + gy , + lei , • (1

This is certainly a good approximation if the orbit size (gyroradius A) is much
smaller than the scale length of the inhomogeneity (L = IVEo/Eo-L'). Kaup et al.
(1985) calculated single-particle orbits in a spatially varying electric field E0 (y)
and constant magnetic field Bo by a singular perturbation method, assuming
c = A/L to be small. We write down their orbit, neglecting terms 0(c 2):

XV, = v0 +A 2cos(AT+ ),

v; = -AAsin (AT+O),

1Z = v7+-- [sin (AT + )-sin ], (12)

93 = A [cos (AT + )-cos ],
where vo = eEo(y)/mfl is the drift velocity and A = (W2-41eln./m)-

[-Q1'-w (y)]i is the reduced gyrofrequency (Kaup el al. 1985; Prasad, Morales &

Fried 1985).
In (12) the velocity components at 7 = 0 are solved in-terms of the constants

of integration A and 95:

vZ =v0 +Acos5, vi f f=-AAsino. (13)

Substituting (11) and (12) into (9) and carrying out the time integration, we
obtain, with the aid of (13),

k'+ 4net fds 8fo d' $

,L + (I.) $ + 0)
=-4ne' fd1v+{fO+kPA) ( f+ v2d-+" (14)

f aa
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where, in the respective lowest orders,

10 = kv. 1 (15a)

vs=-v'( -2 1 +

13 fL-v 8 -w kv,-:w±A k-v,-w±2A)

+ +12A (15c)

In (15) terms with double signs (±) are summed over the two signs.

3. Eigenvalue equation and proof of stability
To proceed further, it is necessary to have a specific equilibrium distribution

functionf,(p=,p,, w). Kaup et al. (1985) devised a model distribution function to
model an electron plasma in a crossed-field planar magnetron:

f,(pz:p,, w) = Ne-P)exp(- p)exp (-L-.), (16)

where w, p= and p, are the constants of motion defined by (5) and N is a
constant. In terms of the velocity components v=, vy and v,, (16) reads

fo(v, v., ,) = NF(y) ex v :- y' x MV x .)

(16')

with F(y) = exp [,8e41(y)] exp (t V- y) ma "Y,] (17)12y7

Then the unperturbed density is calculated as

Ifodv ff [ _ _(21r)3
no(y) - L[ a)] F(y). (18)

Substituting (16) into (14) and carrying out the necessary velocity integrals, we
obtain, after lengthy algebra, --m -

dy V2141 y
-jk'+4ne'no[l1+CZ(4)]) f O, (19)

where

P .-2 Z(c) + [1 ±(r] Zlg;1), (20a)
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-Z(CO- z ZB I8  1±]2#A C;l)+:[ 2)J

(2ub)

R=fiJCoZ(C0)-14 CT 1T; 2 $Z (CF ),  (20c)

wk (m4)1 (n=0,1, 2), (21 a)
4-,--)

1 * e- Is
L -T- , (21 b)

which is the plasma dispersion function (Fried & Conte 1961), and

u -%~~ = 1:1 fl 1dn
_ m0)- - mS'flnddy' (21c)

which is the Larmor drift velocity. It is legitimate to neglect mul in (19) as
compared with 1/y, since the Larmor drift velocity is much smaller than
the thermal velocity (vT) because of the assumed smallness of AIL(u/VT =

(VT/no) dno/dy = AIL 4 1). This neglect is even better justified in the cold-fluid
limit.

We shall now consider a few limiting cases of (19).

(i) Cold-plawma limit (w/k I VT)

Expanding the plasma dispersion function in powers of (kt/w') v and taking
the limit as VT-*O, we can reduce (20) to

P= 2flA2

Q= _ 1
R = 2 - 0

Substitution of these expressions into (19) yields

d$ dw 2,/dy d O k I  _-= 2 P' 0. (22)
dy t w- '+wPdy wio/ W(22)

In obtaining (22), we have put y = f8 and A2 = 0'. Equation (22) could have
been obtained by starting with the cold fluid equations.

(ii) Maslesm guiding-centre limit
If the electrons are treated as a massless guiding-centre fluid (m -+ 0) then P, Q
and R aU vanish, to yield

d42 _ V$( - 4yretno 8[ 1 + Co Z(4) 0. (23)

This equation could have been obtained by employing the drift kinetic
approximation, in which the electron dynamics in the plane perpendicular to
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B. are suppressed. We can also see that the drift approximation is consistent
with the approximation of very high frequency, w ) A. In this case C t ,, and
P, Q and R all become zero.

(iii) Low-frequency wave: A2 f Q'-4 w 21W

When A' It w and 8 % C, the terms indicated by Z.._ in the expressions for P,
Q and R in (20) are negligibly small compared with rOZ(ro). Equation (19) then
becomes

-k' + 4ve'no JI + C Z((,)J} = 0,

which can be cast into the adjoint form

- - ,)' k]{ +4ne'n I + go Z(o)]} (1,I )-1 $ = 0, (24)

where a CZ(Co) 4

-- 3fl/-+ (25)

Regardless of which case we are considering, in order to determine 1 uniquely
from one of the above differential equations, it is still necessary to specify two
boundary conditions. We shall consider the two parallel planes y = 0 and
y = I to be perfect conductors, as in a planar magnetron. Then the boundary
conditions are that the Fourier amplitude 4 must vanish at the two boundary
planes:

6(0) = '(l) f 0. (26)

Next, an effective dispersion relation of Trivelpiece-Gould type, which is the
solvability condition for the differential equation subject to the boundary
condition, is obtained by operating with f 1*dy (* denotes the complex
conjugate) on the differential ejuation. If we perform this operation on (24),
first assuming v = 1 (,8 = y), then we obtain

f dy 141 (1 +IZ')] W~? -J ( 2ne'no Z') 1$1 dy = 0, (27)
where = dZ( ) = - 2[1 +CZ()].

Putting Z' = Z'+ iZ', where Z' and Z' represent respectively the real and
imaginary parts of Z', (27) separates into real and imaginary parts:

fdy[(1 ++) Idl' "1 I+I']+z;ody (A I d -2ne " n.8 I) = , (28)fJo LyI f 22T

z,(fdv 2 f neltn81$1'dy) = 0. (29)

Equation (29) indicates that the solvability condition is that either Z' or the
quantity in parentheses be zero. However, the latter condition makes it
impossible to satisfy (28), since the first term of (28) is positive-definite and the



last term would have to vanish. Therefore the solvability condition for the
system (24) subject to (26) is

Z'= Im[M ] = 0. (30)

We can see that (30) is also the solvability condition for the system (23) and
(26), observing that (23) is formally obtained from (24) by taking the limit as
Q - oo. If an exactly parallel procedure is carried out for the cold-fluid equation
(22) then the solvability condition turns out to be Im (w) = 0, which is the cold-
fluid limit of (30). Thus electrostatic parallel waves in the cold-fluid
approximation are stable in the planar magnetron.

Returning to (30), we examine the possibility that it could be satisfied with
Im (w) > 0. The tabulation of the plasma dispersion function (Fried & Conte
1961) indicates that the only points on the complex C plane that satisfy Z' = 0
with Im (w) > 0 are those points on the positive Im (CO) axis. But the value of
Z' on the positive Im (CO) axis is restricted by -2 < Z' < 0. However, we can
immediately see that with -2 < Z' < 0, (28) cannot be satisfied, since it can
now be reduced to a series of positive-definite terms. In summary, the
eigenvalues of the systems (24) (with a = 1) and (26) should be selected from
those points satisfying Z' = 0 in the lower-half O plane. These eigenmodes are
therefore only Landau-damped.

It is a foregone conclusion that the eigenvalues of (23) will also give only
damping as observed in the solvability condition (28) when we take the limit

Finally, we consider one case of anisotropic temperature by assuming i = 2
(y = 3fl or T. = 3T,) in (24). The analysis of the case for a general non-integral
value of P is much more difficult, but the following result for P = 2 strongly
suggests that the above does extend to general values of t'. Similar algebra to
that employed above yields

+ J 4nTe'n (2f2 
- 4 2w2 r -W2 -Owl ]1)12dy -0, (31)

f[I - 2,, + 4 (a a)]d$ dy

f r
+f{4ne'nostl -%(o+2a, 

s-2f 1 wt(on#-t  _ a)]

+k2(1 -. Wt)} Ib2 dy = 0, (32)
where I I

a , 0 - g 1+ Vz), ag = _ Z .

Again, as a solvability condition, either Z or the quantity in braces in (31)
should vanish. If we choose the latter condition then (31) and (32) combine to
give

d$ t  d4Wf[ '+ (k' + 4Ye'nO8)JJ I~'dy+ (a4+ a) fW'P ( 161jj - 1 -'1)dy =0.

olJdlI(33) (33)
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In our present theory the last term of (33) can never be negative since the ratio
of ( ffiv.) 1011 to Id/dyl' is O(AI/L'). Thus (33) cannot be satisfied, and one
of the solvability conditions for the anisotropic distribution must again be
Z' - 0. The possibility of growing eigenvalues is rejected since the other solv-
ability condition (32) with , - 0 can again never be satisfied if -2 < Z' < 0,
which gives a, < 0. In conclusion, even for a distribution function with aniso-
tropic temperatures (v = 2), the eigenmodes are subject to only Landau
damping.

In the general case of non-integral values of P, it is certainly true that
aj - 0 is a solution. However, it cannot readily be verified that this is the only
possible solution for the imaginary part of the Trivelpiece-Oould dispersion
relation, owing to the occurrence of irrational powers in (24). Thus we cannot
at present exclude the possibility of the existence of some other unstable mode
where a, * 0. However, we do not expect any such modes to occur, since no such
mode was present for the P' = 2 case. We shall assume that no such mode exists.
Thus instability could only occur for a, = 0, and again we have a, < 0 and the
real part of the Trivelpiece-Gould dispersion relation being positive-definite.
Thus unstable modes with a, = 0 cannot exist, and the eigenmode must be
Landau-damped whenever a, = 0. The total exclusion of the possibility of any
other modes (a, ; 0) would probably require an analysis with numerical or
analytical solutions of (24).
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Summary. We study the evolution of weakly nonlinear hydro- I. Introduction and model
dynamic disturbances on a static cosmological background, pay- It is becoming increasingly difficult to reconcile standard models
ing special attention to nonlinear modulational instabilities, so- for the formation of large-scale structures and galaxies with
litons, and self-focusing. Our model consists of two distinct
nonrelativistic fluid components coupled only by gravitation, upper limits on the small-scale anisotropy of the microwave
The two-dimensional (cubic) Nonlinear Schroedinger Equation background (Uson and Wilkinson, 1985j. Recent observations of
(NLS) is found to govern the long-term evolution of the envelope large-scale structures such as filaments and voids, together with

of weakly nonlinear, nearly plane-symmetric, almost monochro- the task of explaining fundamental properties of galaxies (such as
matieaclyostinwes, onrlinermdutionalminstabilityhmy their characteristic masses), have led recently to exotic proposals.

t a such as the existence of cosmic strings. Without taking a positioneven arise within a range of wavenumbers for which both modes on the merits of such exotic proposals, we investigate in this
of the linearized theory are (Jeans-) stable, leading to the pos- paper the possibility that one can do without them. We will see
sibility of soliton formation. Extrapolated to a realistic expand- that acoustic waves in a self-gravitating system of two decoupled
ing universe, this result suggests that nonlinear modulational nonrelativistic fluids may suffer nonlinear (modulational) insta-
instability might "switch on" before the linear (Jeans) instability and may form self-focusing singularities. depending on thi
Moreover - in contrast to the one-fluid case - the two-fluid relative densities, the wavelength, and the local initial conditions.
system studied here also exhibits a violent nonlinear self-focusing The predictions made b) any' linear theory of fluctuationsinstability of the type observed in experiments with optical strongly depend on assumptions made about the "initial" fluc-
beams. Provided certain restrictions on the wavenumber and tuations. In contrast, nonlinear systems often exhibit qualitati-
initial conditions are satisfied, self-focusing leads to a steep rise in vely similar behaviour for large classes of initial conditions. The
the density contrast at certain isolated points in two dimensions fact that non!inear effects near recombination are presumably
corresponding to lines in three dimensions. (Of course, the pre- still weak does not necessarily preclude strong qualitative devia-
sent theory can only follow the evolution of self-focusing tions from the predictions of linear theories, provided the evolu-
singularities until the condition ofweak nonlinearity is violated.) tion time is sufficiently long for the nonlinear effects to accu-
We also find some evidence for the onset of nonlinear saturation muaeToia197171iskeic,91;Pbes170

of lnea Jens istailiies If resnt.satuatin wuldmulate (Tomita, 1967, 1971; Juszkiewicz, 1981; Peebles, 1970:
of linear Jeans instabilities. If present. saturation would imply Liang, 1976, 1977; Vishnaic, 1982). By means of a multiple-time-
that nonlinear instabilities might dominate, at least under certain scales approach, we will see that linear dispersion and cubic
circumstances. In that case. the usual picture of biased galaxy nonlinearity may have comparable effects over sufficiently long
formation at the Jeans mass scale would have to be regarded as time scales. The evolution of a wave envelope with "slow" trans-
oversimplified. Independently of our particular model, the pos- verse dependence will be seen to satisfy the well-known Nonli-
sible existence of nonlinear modulational instability implies that
caution should be exercised when interpreting the results of near Schroedinger equation in two dimensions.A nonlinear mechanism for the (occasional) formation of
certain "n-body" numerical simulations used by various re- filamentary structures by nonlinear self-focusing was recently
searches in large-scale structure and galaxy formation: Any suggested by one of us (Kates, 1986). It was erroneously claimed
numerical method which (in effect) filters out the high-wave- that self-focusing occurs (for certain range of the wavenumber) in
number part of the initial fluctuation spectrum may seriously a model consisting of a single fluid on a static cosmological
underestimate the effects of resonant phenomena which can background. The correct coefficients for the one-fluid NLS equa-
transfer power from high to low wavenumbers. tion will be given in the Appendix of this paper. As it turns out, if

Key %ords: galaxies: formation - cosmology- gravitation only one fluid is present, modulational instability can indeedoccur, as claimed, but the coefficients of the resulting NLS

equation never admit self-focusing singularities, because the
linear dispersion term does not change sign. In the present two.

Send offprint requests to: R.E. Kates fluid model, the linear dispersion term can take both signs.
* Permanent address: Department of Physics, Clarkson Univer- Our interest in studying a system containing two fluids is also
sity. Potsdam, N.Y. 13676, USA motivated by strictly astrophysical considerations. Recentl), con-
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siderable evidence has been found in support of a dark-matter fluctuation equations on a background satisfying an expansion
hypothesis: suppose the predominant constituent of the universe law appropriate for nonrelativistic material. One may also incor-
since recombination has been some form ofdark matter that does porate the case in which one of the fluids is a photon fluid. Of
not interact directly with ordinary matter and in particular with course, in that case the expansion law (2) for the background
electromagnetic radiation, except through the gravitational density is modified.
potential. If one also supposes that "biasing" occurs, it is possible We will concentrate our attention on two-dimensional flows
to avoid gross contradictions with the observations (Frieman and dependence on two spatial dimensions. The extension to
and Will, 1982; Davis, 1985; Vilenkin, 1985; Wilson and Silk, three dimensions should be evident.
1981; Wilson, 1983. Efstathiou and Silk, 1983; Bond and Imagining that the material consists of ordinary and dark
Efstathiou, 1984; Vittorio and Silk, 1984). Moreover, the in- matter (of course, the model is equally applicable to any two
dependent evidence for dark matter is rather compelling (Rees, decoupled fluid components, visible or not), we denote the exact
1984). density of the ordinary matter by n(x, y, ()" po(t) and the exact

The most plausible candidates for the dark matter can be density of dark matter by N(x, y, t)- po(). (That is, n and N are
treated as collisionless. If at a some epoch both the dark and the the relative concentrations.) The background concentrations are
ordinary matter are nonrelativistic, it is reasonable to describe denoted by no(t) and No(t), respectively. We suppose that the
the mixture by a Vlasov-Euler-Poisson system. Quadratic non- pressure gradients are strictly proportional to the density
linear effects in such a model were considered recently by one of gradients.
us (Kates. 1987). Disturbances whose characteristic length exce- As in the one-fluid case (Kates, 1986), it is convenient to
eds the Jeans length by a sufficient amount were found to satisfy measure the time in units of To-(4nGpo(to))- 12 and the spatial
to good accuracy the well-known Kadomtsev-Petviashvili equa- coordinates in units of a0 , the expansion factor at some time to.
tion of type I (Kadomtsev and Petviashvili, 1970), which can be (such as recombination). Following Peebles (1980). we introduce
solved exactly by inverse scattering and admits two-dimensional a modified Newtonian potential, and we remove the dimensions
lump solutions. These lumps, which represent regions of negative with ao and To. Similarly, we express the peculiar velocities in
density contrast, suggest themselves as possible mechanisms for units of ao/T o and denote these scaled peculiar velocity vectors
cosmic voids. The model also predicts strong biasing, i.e., the by [u(x,y,t), v(x,y,i),0] and [U(x, y,t), V(x,y, ),0] for the
density contrast of the ordinary matter in lumps is much larger ordinary and dark matter, respectively.
than that of the dark matter. In this paper, we proceed as if a(r) and po(t) were constants.

Under what circumstances might a model consisting of two These conditions can be achieved self-consistently by choosing a
noninteracting fluids be relevant for cosmology? First, suppose at nonvanishing cosmological constant A so that Eqs. (0)-(2) admit
some epoch the universe can be thought of as containing pri- solutions in which a(t) and po(t) are independent of the time
marily dark matter and one kind of visible matter, for example (Einstein static universe). In the Conclusions, we will discuss the
photons. If the velocity dispersion of the dark matter is suffici- degree to which one may hope that important features of the
ently small, then it is reasonable to describe it as a pressureless dynamics presented here persist when one allows for a realistic
fluid, i.e., dust. If the ordinary matter is described as an ideal fluid expansion law.
with pressure, ther the mixture is an important special case of The system to be studied consists of mass-conservation and
our model. Euler equations for each fluid constituent, together with a

Second, suppose that one ignores the presence of dark matter. Poisson equation for the modified potential, whose source is the
Then the universe may be thought of as containing two noninter- sum of the density contrasts of the ordinary and dark matter. (We
acting fluids: the baryons and the photons. Because of the dif- assume that the rotation of each velocity field venishes.) We thus
ferent Z-dependences (Z = redshift) of the background densities seek functions n(x, y, t), N(x, y, t), u(x, y, t), ,(x, Y. t), U(x, y, t),
of photons and baryons, the relative proportion evolves with V(x, y, ), and O(x, y, r) satisfying
time. As we shall see below, the relative proportion turns out to
be one of the critical parameters for determining which modes are c(n) + c1(nu) + e,(fl) =0 (3)
modulationally stable, which are modulationally unstable, and eu) + uu+ Vyu+c2 (og n) + =O (4)
which are modulationally unstable with self-focusing. ev) + uev + v,v + cef(og n) + , 0 (5)

We begin by constructing a homogeneous, isotropic back-
ground (Newtonian) cosmological model characterized by an er(N)+ ,(NU)+ ,(NV)=O (6)
expansion parameter a(r), a total background density po(t), and a e,(U)+ U2,U+ Ve, +Cej(og N)+ 0,=0 (7)
cosmological constant A, satisfying

d2a([) 4 1 e,(V)+UeV+ VeV+ C2 eflog N) +40 (8)
3t I - Gpo(t) +A/3 ]a(() (1) a!2O+ e'o =(n -no)+(N_-NO) (9)

d The quantities c2 and C2 are constants representing typical
-[po(t) a(t)")=0 (2) propagation velocities (squared) in these units and are propor-

tional to the temperatures of the fluids (idealized as ideal gasses

(The notation and terminology follow that of Peebles (1980) with an isothermal equation of state; the final results would differ
unless otherwise stated.) We suppose that the density fluctuations only slightly for other equations of state). The two fluids are
are small compared to the background density and that the coupled only by gravitation. Note that the background corres-
peculiar velocities (that is, the velocities with respect to the ponds to the solution N = No, n,-n0 , with all peculiar velocity
background expansion) are small compared to the speed of light, components and the potential vanishing. In a realistic back-
If the material is strictly nonrelativistic, one obtains Newtonian ground, of course, the time would enter Eqs. (3)-(9) explicitly.
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2. Linear theory cross in the unphysical region corresponding to k2 <0. Each

Before we study the effects of nonlinearities, it is useful to obtain branch remains near one asymptote, and one of the asymptotes is

the dispersion relation describing the simple linearized theory of close to the origin. The lower branch satisfies approximately

disturbances about the background: t 2 = -1 + C2k (13)

(S+No)(R+no)=noN o  (10) and will be referred to below (occasionally) as the "principal"
section, because it resembles the one-fluid dispersion relation.

R E- 2 -c 2 A (11) The upper branch satisfies approximately

SEW
2 -C 2k2  (12) w2 =c 2k2  (14)

A special case is sketched in Fig. I. and will be referred to below as the "acoustic" section, because it
One branch (the "upper" branch) of the hyperbola defined by(10) always passes through the origin, the other ("lower" branch) passes through the origin like the dispersion relation for acoustic

passes through the point (-2n o,2No). The allowed portions of waves in the absence of gravitation. If c: < C2, the asymptotes
pases hrogh he oin (-2no 2N). he lloed ortonsofcross in the physical region at k 2 -=C2

_C
2 . The two branches:-4ch branch are of course those lying in the region of the R-S caot intesc re, at intche roe.anthis

plane corresponding to k2 >0. Restricting the discussion to these cannot intersect, of course, but rather interchange roles. In this

allowed portions, we note that the upper branch always corres- case, the term "principal section" will mean either branch when it
alpowd tmoes, wnethral frequenThe wer branch cotns- is near the S= - No asymptote, while the term "acoustic section"
ponds to modes with real frequency. The lower branch contains will mean either branch when it is near the R= -n o asymptote.
(in general) a stable and an unstable (imaginary-frequency) part. Finally, in the high-mass-contrast case, the critical Jeans wave-
[If one of the fluid components is presureless (dust), all of the number k. approaches I/C as no/N o approaches zero.
lower branch represents imaginary frequencies.) Thelinear insta- Thus, the linear theory predicts that the solution of
bility will be referred to below as the Jeans instability. Eqs. (3H9) for generic initial conditions will be dominated at

Along the asymptotes S = -N, R = -n in the allowed large times by the unstable modes of longest wavelength, which
regions, the dispersion relation approaches that of a single fluid in the high-mass-contrast case have a growth rate of about unity
with given density and sound speed. in the hactrsticase ae owt Te b ou nity

If both frequencies corresponding to a given wavenumber are (in units of the characteristic time scale 70). The basic length scale

real, there are in general two propagating modes with distinct which is singled out by the dynamics (as opposed to the initial

group velocities. We will be especially interested in those instabi- conditions) is the Jeans length.

lities which are not present in the linear theory but do occur when Since the Jeans length is presumably a decreasing function of
time in our universe, the prediction one would obtain by extra-nonlinearities are taken into account. Moreover. as we will seebelow. it is possible that the growth of lineafly (Jeans-) unstable polating the lineari~ed version of our model would seem to be

bew, iy isaosietrate gr down t olinear feans-) usl that, at a given mass scale, growth can only occur after a well-
modes may saturate or slow down due to nonlinear effects. Thus, defined epoch. As we saw above. the largest mass scales would
even at wavenumbers where the linear theory predicts Jeans become unstable first. However, there is no justification for

instability, the dominant instability may be the nonlinear one. epente irzed the re n accurat apr
expecting the linearized theory to provide an accurate appro-

Of particular interest is the high-mass-contrast case: Suppose ximation to the full theory over arbitrarilily long times. (More-
that one of the fluids has a very low concentration compared to o hlation ntroer b neglng te (ore-

the other, i.e., n0 'N0 << I (see Fig. 1). If c2 > C2, the asymptotes over, the limitations introduced by neglecting the expansion and
by assuming a nonrelativistic model become more serious at long
times and large lengths). In what follows, we will investigate the

Spossible role of nonlinearities. As we shall see, at a given mass on
length scale, it is possible for nonlinear instability to switch on
"before" linear instability.

3. Derivation of the two-dimensional nonlinear Schroedinger
, : equation for acoustic disturbances

R In a weakly nonlinear system, nonlinear effects can become
comparable with linear ones only if they accumulate over long

.: ]: :l ] [: : ::. ::: ] ]::]']]i :: :: 
[ : : :: [' :  : times or distances. The strength of the nonlinearity thus intro-

duces new length and time scales into the problem. In order to

.u discuss weak, nearly plane-symmetric, nearly monochromatic
fluctuations, we assume that the physical quantities of interest
can be developed in asymptotic expansions depending on the
coordinates and the small amplitude parameter c in a prescribed.1 i .:way. Writing the t-dependence as

Fig. 1. Sketch of dispersion relation (2.1H2.3). (3.21) for the case n.no+tnl +r 2 n2 +t 3 n3 + ... (15)
no - 0.1, No = 0.9, C21/C2 = 0.7. The unshaded area designates the allowed
region where 0 > 0. The upper branch is automatically Jeans-stable u - ut +E2 

U 2 +.AU+ . . . (16)
W2> 0). The lower branch contains an unstable domain w2 < 0. V - 2 2.t+r ... (17)
Asymptotes are at R = -no. S - - No. The region shown corresponds
roughly to -2 < R < 2. -2 < S < 2 N-. No+cN, +cN,+C N,+ ... (18)
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U LUi +C
2 U 2 +t 3 U3 + . (19) where L is a fixed linear operator acting on the Ofr 1 parts Q. of

V- t
2

V 2 +CV 3 + . (20) the expansions (5)-(21) and S. is a nonlinear function of the
terms Ql, Q2, Q,_ , and their derivatives. Resonances occur

Sto, +c2,2+c303+ .... (21) whenever S. contains terms which are not orthogonal to the
we note that the leading deviation of all quantities from their homogeneous solutions of the self-adjoint operator L. Reson-
background values are of 0(t) or higher. ances would lead to secular growth and thus nonuniformity ofAs has been discussed in various papers and text books (Van the asymptotic expansions ( 5)-(21). In order to obtain uniformlyAs has4 bee discussed in varousin paehs, anext bsan, valid expansions, we employ a multiple-scales technique. which
Dyke, 1964; Cole, 1968) on two-timing methods, one demands, consists in choosing the functional dependence of the envelopesnot only that the expansions (15)-(21) should represent pointwise in such a way as to render the sources S orthogonal to the
valid asymptotic expansions, but also that the validity be uni- P
form over some possibly c-dependent domain of validity which homogeneous solutions of L. In this problem, this condition

amounts to selecting those terms which are proportional to a
may become large as --, 0. In this case, the domains of validity linearized propagating wave solution and demanding that the
should extend over distances of at least order 1/c (times a sum of all such terms vanish. Note however that the nonresonamtwavelength) and over time intervals of at least order I/E2 (times aperiod) at some fixed position with respect to the "wave packet-. parts of S. need not vanish, but rather will drive Q,.We introduce the slowly varying spatial coordinates It is convenient for the moment to carry out the calculationwith the Y-dependence suppressed. As expected, at 0(t), the
X t.X (22) solution takes the form of the linear theory in one dimension:
Y- 2EC, (23) k2nof, (33)as well as the slow and slower time variables Ck

TF=tt (24) p ( 1711 (34)
-=t. (25) k

Derivatives of functions of the slow variables are evidently down =2- Ck 2
by factors of z or C2. Since we are interested in the evolution of
slowly modulated wave trains, the dependence of all quantities of ko 6interest on the fast variables (t, x) is taken into account by rapidly -.... (36)
varying phase functions, whereas the dependence on slow vari-
ables occurs in a multiplicative amplitude or envelope function. 1 + no N o(It is this envelope which will turn out to satisfy the NLS w 2  w2 _ 2 _- (37)
equation in the slow variabls.) Note that the 3-dependence where the dependence of f, on the slow variables is as yetoccurs only through the slow variable Y. In first order, the undetermined. (Note that (37) is equivalent to (0)-(12).)
assumed form is thus At 0(02 ), the solution contains contributions at the funda-

mental and Iice the fundamental:n 2 -= e0 +me'0 (26) , = (M,' ee + c.c.) + (M(2 e2 ,0 + c.c.) (381
u ,e +,e (27) N2 = (M " Y+ C.C.) + (M 'e 2 4 + c.c.) (39)N = Mief+M*,e-i (28) (40

U2 =(v ' 2"e" + c.c.) + (V(21e2 ,1 c.c.) (41)4'1 = f1e +f e -, (30)
02(f' e" + c.c.) + (f12'e2 0 + c.c.). (42)where in,, MI, p2 , vfft etc. are functions of (X, Y, T, T). It is Without loss of generality, we set

convenient to introduce the notationk O Of-0. (43)

-- o-W (31) The solutions for the terms proportional to e2i, e-24 take the
form

for the derivatives of the rapidly varying phase. Note that is the
negative of the physical frequency. [In principle, the frequency p2= (could be large compared to unity, as long as it is restricted to -
satisfy w'4 ]/t in order that the higher-order terms be truly
decreasing in order of magnitude (Kates, 1986). However, no -.m _M= W(5
generality is lost by treating the wavenumber and frequency as if k
they were just of order unity, as will be done here.] u 2' kf12' If2 2w ]M i2

Our procedure is to collect terms order by order, paying -2 2 _+1-c 1+ Ii-j (46)special attention to resonances: Now, at each order cP, the system JL "i
assumes the form M12) k 2f(21 1[1 2 irM'1

-in ,.,;" 2 _ 2 (47)LQ,-S,, (32) No w,_Ck+ 2 [ w2 -C-A jL N(47
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f1 = -  lo-() + u__Mk2JLn+
no[ 2wk lno

_ 2  -C2k2 ---- LI:- (48) 2 2 (59)

The terms proportional to el, e- 10 yield several algebraic rela- 3 N 2 /2 N +-CX 2

tions as well as the first secular condition: NO 0  21 k1
"IM,' - -- "1J J

o- n+ -- j [- +kar]m,[X, Y, r,] (49)2k0  nM M* MM'1 iW2  [MI21
m; 2iko+ L o- J--T ]L-o

m(2 _¢2k2)2 [w- x +kr]f,[X, Y, T, r' (50) L I 0

ik ~ ~ wcII I + Ij e10
(1),~ rW 2 (r1),2,l

V2 M -- - 2 [-tc+ kar)M,[X, Y, T, ) (51)-
k N0  Nok (60)

2ikw - f + ) MO 0(61)
M(3)= [ - wex+ keTIAfXI , T, T] (52)X+3+ 3= .(1(W_2 -C 2k2 )2  

Substituting (57) and (59) into (61) and using (33), (34), (52) and

D2  (54), we obtain the following expressions, without the term in-
ex(fl)+[OW-k]f1 =0, (53, volving 6ye,(f1 ) in braces:

2ik2  1 2 1
where we define for convenience -2D 2 , A +k6L2D5+D-ID-3-2DD3-[D21'

now 2 L-
2 

+ Now 2 L-
2 (

Dt-to_~k) -(4- _~:). (54) 2 1 • I
(~2 2 )2 (CO2 -C2k2)L, -- [DJ]2 lf'()+[ -D(a -k[D1 ,(f,)2 + -[D 2- 4D3]

The secular condition (53) is a property of the linear theory and
implies that, to a first approximation, the amplitude information x [ E- + kF2] 2f + 22 [cx -kcT]exf, - ex4xf +
propagates along the integral curves of the vector field W

o - + t- (55) {-[I +D ]2 =) (A)} = 0. (62)
Using the secular condition (53) we find (again without the term

C (56) in braces)
v8 = -(I + D2)-, 56k 2ik 2  

ef

where r,-d(-cu)/dk is the group velocity of the wave packet. -D,=
At 0(41), the equations split into partc proportional to e I"', C CT

e 2 , and ele. The parts of the 0(E3) solutions proportional to D_6 D2D 1 2 D]2_2
e' 34 and e-2 ' exert no influence on the secular terms at this +D,
order and will play no role in what follows. Let us denote the
parts proportional to el" by in" ), MIII, p v), fVO1, etc. as [-3(D2 )2 e+ D-4D " f 1 .Jl D -_(1" + y [ + D] f- 0. (63)
before. We collect only those terms in the equations proportional L2[D]2 Jax2 I e)" (63
to e"i. Using the mass conservation, Euler, and Poisson Without the term in braces, Eq. (63) is the one-dimensional
Eqs. (3)-(9) and setting (without loss of generality)f"=0, we nonlinear Schroedinger equation. However, it is possible to
obtain the relations3nolna creigreuto.Hwvritspsibeo

generalize the above calculation in order to take into account the
CA i Y-dependence as follows: The linear terms in (63) are those which

n/4A- -- m '+- r" + eir i + nOaX ZU1 would be obtained by applying the present singular perturbation

method to the linearized version of (3)-(9). It can be easily
,.. P2 2l(57) verified that the nonlinear term is unaffected by the inclusion of

m, !1 In m( 2  l1! , , Y-derivatives and )-components of velocity. We have therefore
• ,'-,o 2 ,,,r2 -n I- ,-k,,, carried out a second calculation of the linear coefficients, includ-

Ln no J k ing Y-derivatives, by constructing the linear operator associated
no  [ 2 0 1  2 m ' ,,m ',1 with the dispersion relation (10) and expanding in terms of slow

2 _ 
2 I k Pp2  kw 1 -P2 + 1  derivatives using the computer algebra system MUMATH. This

UP Iprocedure confirms the coefficients obtained above and provides
rm2 m.,n mm(2'l , rm

+ 1 2 , M 'M _ ,2 W2 [["21 the Y-coefficients in braces in (62)-(63).kL- LJ Finally,etting

-ik[er1")-aTI j+ iW a [ [--/[" L2]+-e,"j F- -F , (64)
(5)no J L(no65
(58) 4-kX (65)
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q k Y (66) Segur, 198 1). Therefore, solitons should not be expected to persist
-'r' (67) indefinitely, even if they do form. Unfortunately, the general

solution of (68) is not yet known. However, solutions of (68)
we obtain the two-dimensional nonlinear Schroedinger equation satisfy a sequence of integral identities, the first few of which are
in the form i,

-7-1 =2 9F- 0, (73)iaF e2 F e2'FC
-=_ + 21WFOF 2] + (68)7 + E

CT 0, (68) ej
where -- 0, (74)OT

1 I D32 1 2 2 1] 62-2
W+ - -DaD3-[D2 -- D3 ] I (69) (75)

Da I [D2 -3[D 2 ]2 -4D 3 ] (70) where
2[D2]- SJ ffv'dd (76)

Es-- Il + D2]/D 2 .
(71)

2

The result of our multiple time-scales approach is thus the J- JJ[D -[F4]-2 +E.[F,] 2 
-4'F

2 F*2J]d~d (77)
following: Provided F and its complex conjugate F* are chosen
in such a way as to satisfy Eq. (68) and its conjugate, no secular J2 m [D2 + Eq2]F'Fdd (78)
terms will arise in the solutions up to and including O(WS), as is ff
necessary if our expansions (15)-(21) are to represent uniformlyvalid asymptotic approximations (over the distance and time If the coefficients D, £ and W are all of the same sign (say
scales considered) to some exact solutions of the original problem positive) then. for certain nonsingular initial data. Eq. (68) exhi-scaes onsderd) o sme xac soutins f te oigial robem bits self-focusing singularities in a finite time (Zakharov and
(3)-(9) corresponding to particular initial value data. [Eq. (68) is s self-foc s sn e n a finie t e holanda necessary condition; whether it is sufficient for uniformity Synakh, 1976), as one can make plausible by the following
remains an open question.] argument: Suppose the solution for F were regular at all times.For the case D' >0, the integrand of J2 is positive definite. On

4. Qualitative properties of the to.-dimensional NLS equation the other hand. if the initial data has the property that the
integral J, is negative, then by virtue of (74) it will remain so.

The degree to which the nonlinear theory differs qualitatively However, Eq. (75) implies that a time f0 exists such that J2 <0.
from the linear one depends on the relative signs of the co- leading to a contradiction. The nature of self-focusing singu-
efficients D, E, and W. Since any solution of the one-dimensional larities has been investigated theoretically (Talanov, 1965;
NLS equation also solves the two-dimensional version, it is Zakharov and Synakh. 1976 Newell, 1978). and their occurrence
convenient to review a few of the properties of the one-dimen- has been observed in nonlinear optics (Chiao. 1964; Kelley. 1965).
sional NLS equation expressed in the form Of course. only the onset of self-focusing is a true prediction of

iF O2 F the theory presented here: If the density contrasts become large
-2+2WFF 2 +D =0. (72) compared to unity, then the problem enters the fully nonlinear
C '? regime and the expansions assumed here are no longer appro-
If Wand D take different signs, then solitons do not form and the priate. The essential point, however, is that the predictions of the
underlying acoustic disturbance is called "modulationally stable" nonlinear theory differ qualitatively from those of the linear
(i.e., small modulations of a plane wave are always stable), and theory: Even at wavenumbers where the linear Jeans instability is
the predictions of the nonlinear theory are not much different not present, the nonlinear theor) predicts the possibility of soliton
from those of the linearized theory. If N and D take the same sign, production or the possible occurrence of occasional dramatic
then the acoustic disturbance is said to be "modulationally pointlike increases in the density.
unstable" (i.e., there exist unstable perturbation modes of a plane
wave), and soliton formation is possible. 5. Regimes of stability, modulational instability, and self-focusing

Now, the one-dimensional NLS should give a good descrip-
tion of the dynamics during some time period if either one of the It is routine to work out the symptotic values of the coefficients
terms of (72) involving spatial derivatives is small compared to W, D, and E along both branches of the dispersion relation in the
the other. Thus, if the transverse dependence is slow, even with general case:
respect to Y, then solitons can be expected if W. D >0. On the Along the principal section (lower branch), asymptotically in
other hand, it is also possible in principle for the disturbances to the limit W2 .-. c.
be so coherent that the X-variations are much smaller than the L  -

Y-ones, and in this case "transverse" solitons would be possible if DL,=[-I] +[(w:/o) 2] (79)
W<0. (Note that E<0 always holds in this system.) n.

Although of course solutions of the one-dimensional NLS E- - 1/2+ O[( 2/n 0)]
- 2  (80)

equation also satisfy the two-dimensional version, they are un-
stable over very long time scales with respect to slowly varying or D = 1/2 + O[w 2 /no) 2) (81)
small perturbations in the second spatial direction (Ablowitz and Lno



2 [ ]+0W2"no)2]. (82) c=--1 +C'k 2 +nA+O[(nolNo)]. (93)

W= - , nowhere

The asymptotic values in the limit co2-- oc along the acoustic 1
section (upper branch), can be obtained from (79)-(82) by replac- e [C - c2 ]k2 - (94)
ing no with No. Thus, at sufficiently high frequencies along both
branches, D is always positive, W is always negative, there is no The coefficients are then given approximately by
self-focusing and in fact acoustic disturbances are modulation-
ally stable with respect to the longitudinal direction. Since E is DL=(-l)Lw2L 2+ (95)
negative, the only possibility for soliton formation predicted here W= [w(1 +5( 2 - 8w')/ 12 + ... (96)
is the case where the acoustic disturbance is very coherent. Then, D=c"k1(4w) +  (97)
as described above, the one-dimensional NLS equation in the Y " . (
and T variables admits soliton solutions. E= -c 2k2/(2w 2 )+ .... (98)

In the limit w2 --+O along the upper branch (acoustic section), Along the acoustic section, the frequency satisfies approximately
the values approach

DL=dLk -2+0(1) (83) ( =c2 k =-+no+ ... (99)

3 4)-(C 2 -C2)A2 (0)
D=- 2-k 2 +O(k') (84) 6 -(C 2-c 2 )k'(2d2  C = k2 10

I and the coefficients are approximatelyE= -- +0(k2 ) (85)2 DL=(W2/no)L -IL+ . . . (101)

W N = [(D2 /(nob)][2,3- 1/(6k 2(C -C 2
))

] + ... (102)W-- -- [2d 3-+ d=]rd;Ik -2  (86)
24 D = - [(no63/(2w 2)1)[1 +3 (k2 (C2  c2 ))]+ ... (103)

where 1[n- +(-IL] E --+ ... (104)
(nC 2_ Nc 2)L- I [no + NO] + (87) = 2

4 ( 2- 2)L [n04 N0  - (7
(C _c N 0 j The limiting values along both branches for large and small

frequency agree with those found above in the general case.
Thus, all three coefficients are negative and self-focusing can In the cross-over region, both hyperbolae are near the asy-
occur.mptotes, and a different expansion is called for. To leading

Finally. as co-.0 along the lower branch (principal section), 'order" in (n/Nai),
we obtain

DL = 2
L - 2( -)LdL + O(w

2
L) (88) C2 

=C
2 k2 +(no ), 

2 r+ (105)

1 (C2 -C 2 )k2= 1 +2(n) 2d+ . (106)

( -  (89) r-d (l4d 2)1 2, (107)

with the upper (lower) sign corresponding to the upper (lower)
E +(1) (90) branch, (see Fig. I). The coefficients become

w2  D2 = W2(l/r 2 + 1)+ . . . (108)

24d 2  (91) DL( '(no)' 2/r ... (L>3) (109)
where N=w6/(2r'(r 2 + )n312)+ . . (110)

no No D= -2r/(W2(no)i/2(r2 + l)3)+ . . . . (11)

L c + CU2 "  In the one-fluid limit, which is discussed in the Appendix, the
'Lis ) No -L' (92) three coefficients W, D, and E are never all of the same sign and

/IC 2 C2 Iself-focusing never occurs.
It is also of interest to examine the effects of nonlinearities on

Self-focusing does not occur here, but since W D>0, the system the linearly (Jeans-) unstable modes where w2 <0. Now the
is modulationally unstable with respect to the longitudinal direc- interpretation of a "secular" condition changes of course when
tion, and solitons may form. the underlying disturbance has imaginary frequency. However, it

For reasons described in Sect. 1, it is also of interest to study is still necessary to enforce the secular conditions (55) and (63) in
the high-mass-contrast case (no/N o 4 1) in detail. In that case, we order to keep the higher-order terms in (15)-(21) from growing
can develop the coefficients in powers of no/N o along either larger than the lower-order ones (e.g., the function t3fe"' would
section. The cross-over region (which occurs only if c2 < CI) eventually grow larger than teV). Taking w Miy, and noting that
requires special care. Y 2 -10k (112)

Along the principal section (which by definition means out-
side the cross-over region), the frequency is approximately we examine the implications of the conditions (55) and (63) as
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k.-*O, which is where the linear instability grows the fastest. The The typical time for the nonlinearity to have an effect depends
conditions become on W and is roughly
ieA - 0 (113) (93(1)(At)NL - Tkt (1 18)

001L, - -;k-

S 2(14) whereas the typical time for the dispersion to have an effect is

Equation (114) is a (nonlinearI d.ihusion equation, and gradients roughly

tend to get smoothed out with time. The nonlinear term would 47r 2/0

then have a tendency to cause f, to saturate. Ignoring spatial (AtD - Do) (119)

derivatives, we find that the quantities fJf and the potential 49
approach Along either branch we find, for wL -. o,

1 ..2 ( ) 2L 2,)- 7 (120)

(12 0 11

lim[49J=./2/k~cos(k(x xo)). (16) Along the acoustic section for (o - 0
(At)N, ~-. 2  (122)

However, by this time the growth would have proceeded so far (AtI 2(0-3, (123)
that the asymptotic expansions (15H21) and the approximation

scheme used to derive (114) would no longer be valid. Neverthe- while along the principal section for small positive frequencies
less, the onset of saturation is predicted by these considerations, (AN L _CE- 2 (124)
and therefore it is not valid to assume that the linear Jeans
instability is the dominant one, even if its initial growth rate is (AI)D - iow. (125)
larger than that of the nonlinear instability. The modes with k--0 Note that it is possible to achieve short nonlinear growth time
appear to reach the largest amplitudes before saturating. scales for both sufficiently small and sufficiently large frequencies.

Since the number of solitons estimated above also grows at large
and small frequencies, it seems likely that modulational instabi-

5. Conclusions lity and self-focusing will play a role in a more realistic theory
which includes the background time-dependence. For moderate

According to Eqs. (84H-86) and (102)-(104), self-fcusing occurs frequencies, growth times are long compared to the time scale for
when (a2 -40 along the acoustic section. "Longitudinal"' modula- the expansion of the universe. However, even in this case it is
tional instability can occur on the principal sections for small to possible that (as in the case of the linear Jeans instability) the
moderate values of w 2, whereas the crossover regions (for the qualitative predictions of our "frozen" background will shed
case (n0 /N0 )4 1) are modulationally stable. "Transverse" modu- some light on what is to be expected in a realistic background.
lational instability can occur at sufficiently high frequencies
along both sections. For certain values of the parameters, it is Acknowledgements. One of the authors (DJK) wishes to thank
also possible for self-focusing to occur along the acoustic section Prof. P.C. Sabatier and Dr. J.JP Leon for their kind hospitality at
at a wavenumber for which both the acoustic and principal the Laboratoire de Physique Mathematique of Montpellier at
modes are stable. This means that in an expanding universe, which some of this work was done. This research was also
where the Jeans length is in fact slowly decreasing, a wave of fixed supported in part by the Air Force Office of Scientific Research
k will be subject to modulational instability and self-focusing through agreement No. 86-0277 and by the National Science
before the linear Jeans instability sets in. Foundation through Grants MCS-8202117 and PHY-8405055.

It is of interest to estimate the number of solitons of self-
focusing singularities that might be expected to occur for a given
set of initial conditions. The evolution of a soliton from some Appendix: the one-fluid limit
initial data typically requires the initial pulse envelope to have In Kates (1986), the two-dimensional NLS equation was first
some region over which the phase of the pulse is fairly constant derived for a one-fluid model. Unfortunately, the coefficients
and which contains a normalized area of at least nx/2. Over such a given there were incorrect. Eqs. (34H38) of that paper should
region, the typical number of solitons N, is the normalized area read
divided by it. Our estimate thus becomes 4

k2  C i 2-- 4ck2 (34)
N, :t (W/D)" 12 ', [tpo, (117) 3

where po is roughly the size of the envelope measured in the D a [ C4c, k - 3) (35)

original coordinates, which is related to the degree of coherence

of the initial conditions and depends on some correlation length. I I
Along both branches for large w, N, diverges like w'. Along the E - 2-2 + c, (36)
acoustic section for a)-.* 0. N, diverges like w" 2, along the
principal section like w- 3. For moderate values of w, however, - 2 a .-2 + (37)

soliton formation is unlikely unless o O[" ; 0[t-1].
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8 5 -8 Kates, R.: 1986, Astron. Astrophys. 168 1
QE-w-- ] w : - 1 = 8 c'k'- c4k 2 +4 (38) Kates. R.: 1988, Astron. Astrophys. 194,333 3 3'

Kaup. D. et al.: 1979, Ret. Mod. Phys. 51, 275
(Eqs. (35) and (38) were correct as given in the original paper) Kelley, P.: 1965, Phys. Rev. Letters 15, 1005

Evidently, the coefficients never take the same sign, and self- Liang. E.: 1976, Astrophyvs. J. 204, 235
focusing therefore does not occur. However, modulational inst- Liang. E.: 1977, Astrophys. J. 216, 206
ability occurs for any w. Q changes sign at around kNL = 1.336 kj, Newell, A.: 1978, in Solitons and Condensed Matter Physics, eds.
as reported in the original paper. Below this critical A.R. Bishop, T. Schneider. Springer-Verlag, p. 52
wavenumber, -longitudinal- solitons are permitted. Above kNL, Peebles. P.: 1970, Phys. Rev. DI, 397
"transverse- solitons are permitted. Peebles. P.: 1980, The Large Scale Struc~ure of the Universe.
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1. Nonlinear integrable lattices (i.e. integrable partial difference equations,cf e.g. [1, 3])
are of fundamental importance for the study of classically integrable systems. They are
generic in the sense that their various continuous limits give rise to the hierarchies of inte-
grable PDE's [4]. Furthermore, their study opens up some new points of view on classical
integrability in general [5]. In this note we report on another application of such systems.
In fact, we will show how these lattices give rise to nonlinear integrable mappings. Such
mappings are of interest for the investigation of various aspects of dynamical systems (e.g.
to study bifurcations, transition to chaos, perturbation techniques, cf. e.g. [7]).

Probably the oldest nonlinear integrable mapping is the elliptic billiard due to C.G.J. Ja-
cobi [6]. More recently E.M. McMillan found a fot:r-parameter family of rational mappings
of the plane, together with their invariants [8]. An eighteen-parameter family generalizing
the one of McMillan was presented by G.R.W Quispel et al. in [9]. Moreover, a connection
with soliton equations of differential-difference type was established, cf. also [10]. However,
a spectral interpretation of the integrability of these mappings on the basis of a Lax pair
was lacking.

In this note we take a different point of view from the one expounded in [9, 10] by
considering integrable lattices rather than differential- difference equations as a starting
point. This is convenient, because it allows us to obtain the mappings in a more natural
way than before, namely not as special reductions, but from the consideration of an initial
value problem on a two-dimensional planar lattice. Furthermore, we shall show that these

'Talk given by the second author at the International Workshop NEEDS VII, Crete. July 19892partially supported by AFSOR Grant no.86-0277



mappings do indeed carry a spectral interpretation, and that the invariants can be system-
atically constructed from a Lax pair.

2. We shall use as a prime example for the exposition of our ideas the lattice KdV equation.
This equation ( as well as lattice analogs of other integrable PDE's ) was obtained in [1]
using a discrete version of the direct linearization method introduced in [2].

The equation reads

(p - q + - (p+ -= p2q q2 . (1)

In (1) u = u(n,m) is the dynamical variable at the lattice site (n,m), n,rm E Z, the-and^
are shorthand notations for translation on the lattice, i.e. ii = u(n + 1, m), fi = u(n, m + 1)
and p and q are the lattice parameters p, q E C. Eq. ( 1) arises as the compatibility
condition of a pair of linear problems (Lax pair) defining the shifts (translations) of an
eigenfunction TAk ( k being the spectral parameter ) in the n- and m-directions,

(p- k)i = Lk q-k = Mk -k, (2)

where Lk is given by

Lk ( k 2-p 2 +(p+u)(p-) p+u '(3)

and where Mk is given by a similar matrix obtained from ( 3) by making the replacements
p--+ q and - - .

Let us now consider an initial value problem for (1) on the lattice. One way of doing
this is to assign initial data on a "staircase" as in Fig. 1. From the fact that eq. (1)
involves only the four variables situated on the four lattice sites around a simple plaquette,
it follows that the information on these staircases evolves diagonally through the lattice
along "parallel" staircases. Hence, the initial value problem is well-defined.

Consider,now,the case of periodic initial values along the staircases. The simplest non-
trivial example is drawn in Fig. 1. where we have period 2 initial data on two diagonals,
a, b, c, d denoting the different initial values for u. By applying the lattice equation we can
calculate the data on all the diagonals where the (multiple) primes denote the various itera-
tions of this procedure. One way of doing this is by regarding the first iteration as a vertical
shift on the lattice, thereby "updating" the values of a, b, c, d as follows: b' = c, d' = a, and
a' and c' are calculated in terms of a, b, c, d using ( 1).

2
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m d'-l

d" =a c' d]b'= c 

a' ? b" ac'd'=a bcd

S

c d1' d 'ab= c d b c d

a b c t= c'd'= a

Fig 1. Periodic configuration of initial data on the lattice and its iteration.

However,a reduction to a 2-dimensional one is readily obtained by considering the dif-

ferences along the diagonals:X = a - c, Y = b - d .The mapping reads

Y = -X, X' = Y + _X (4)

where 6 = p-q and e = p+q. Eq. (4) is the original McMillan map [8] which was recovered
as a reduction of the discrete Nonlinear Schr6dinger equation in [10]. This map arises as
the compatibility condition of a Lax pair that can be constructed from ( 2) as follows.

We introduce an ordered product of the Lax matrices ( 3) along the staircase. Because
of the periodicity it is sufficient to consider a product of only four of them, i.e.

= Mad Ldc "Mcb Lba (5)

where Lba and Ld, denote the matrices L of ( 3) in which we substitute u -- a, ii - b
respectively u -- c, ft --* d, and similarly in M we substitute u - b, fi --+ c and u -* d, fi -* a
to obtain Mob and Mad respectively. The matrix C can be regarded as a monodromy matrix
with invariknt spectrum since

C'= M', .L -M,' . (6)

In particular we have that tr(£) is invariant under the mapping, and this indeed gives us
the McMillan invariant [8]

:= (E2 _ X2) (C2 _ y2) + 2cX Y, (7)

3



which can be parametrized in terms of Jacobi elliptic functions.

3. We have shown how to obtain in a natural way an integrable mapping from the lat-
tice KdV equation ( 1). Of course this is only a simple example, and there are various
ways to generalize our procedure. First of all, we can obtain higher-dimensional mappings
related to the lattice KdV by considering higher periods in the initial data. In the case
of period 3 for example this yields a 4-dimensional mapping with two invariants that can
be obtained using a monodromy matrix as above. Another generalization is to consider
other types of staircases, generally some discrete curves on the lattice. Apart from the
lattice KdV one might consider other existing lattice equations as starting point, such as
the lattice MKdV, the discrete-time Toda equation, the lattice BSQ and MBSQ equations
[11] and so on. This work is in progress [12]. It would be of interest to investigate the
canonical structure of the mappings and of the lattices from which they are obtained. For
related work towards this direction see e.g. [13].
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